首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高散热器的散热性能,将压电风扇分别与直肋和针肋式散热器组合进行散热,利用FLUENT软件仿真其散热流场并计算其协同角,分析2种散热器的散热性能特点。考虑压电风扇的振动特性,将直肋式散热器的肋片改为扇形布置,并根据仿真结果进一步将该散热器扇形肋片的后端改为针肋,设计新型散热器。根据散热器温度和协同角分布对散热器的散热性能进行评价分析,结果表明:自然散热时,针肋散热器的散热性能最好,且协同角相对较小;当压电风扇工作时,新型散热器散热性能最好,可比原直肋散热器组合温度降低4 K,比原针肋散热器组合温度降低2 K。新型散热器仅通过改变散热器的肋片布置即可明显改善散热器的散热性能。  相似文献   

2.
张雷 《计算机与现代化》2014,(6):120-123,128
当前许多已投入使用的肋片散热器价格较贵,将其安装在发热量很大的COM Express(COM-E)主板上,在55℃高温工作环境下散热效果不理想。针对商用散热器的不足,本文对COM-E主板肋片散热器进行研究,提出单个肋片热阻的计算方法,并根据COM-E主板的发热量,结合热设计相关计算和仿真,设计优化出一款性能优良的通用型肋片散热器。使用优化后的肋片散热器,加固计算机在高速工作的情况下,顺利通过了高温试验。  相似文献   

3.
In this study, performance of heat sinks using the copper foams as heat-sinking material is investigated experimentally. The copper foam is fabricated by electroforming technique using polymer foam with pre-coated silver film as the precursors. The manufactured copper foams have the porosity, pore density (pore per inch, PPI), permeability and inertial coefficient in the ranges of 0.5–0.8, 10–40, 0.6–2 × 10−9 m2 and 1.5–3, respectively. Besides the copper-foam heat sink, performances of single-channel, plate-fin and pin-fin heat sinks are also investigated and compared with copper-foam heat sinks. The experimentally measured results show that the thermal resistances of copper-foam heat sinks are better than the single-channel, plate-fin and pin-fin heat sinks because of special flow features inside the porous media, enlarged heat-transfer area and enhanced heat transfer coefficient. Detail comparisons between the results of copper-foam heat sinks indicate that the thermal resistance of copper-foam heat sink decreases with the decrease in porosity and increase in pore density. The pressure drop crossing the copper-foam heat sink increases with the increase in pore density and decrease in porosity.  相似文献   

4.
5.
蒋洁  郝英立 《传感技术学报》2006,19(5):2025-2029
对以水为换热介质的微通道冷却器对模拟发热电子芯片进行冷却的换热性能进行了实验研究.通过测量流体的流量、进出口温度、发热片表面热流密度,获得了不同几何结构微通道冷却器在不同加热功率、不同Re数条件下的换热特性和冷却效果.结果表明,微通道冷却器可以有效地对表面热流密度高达5.34×105 W/m2的发热电子芯片进行冷却;微通道冷却器的换热性能随Re数的增大而提高,所提高的幅度随加热功率的增大而增大;微通道的几何结构对换热性能有显著影响,平均Nu数随微通道的宽深比增大而增大.  相似文献   

6.
Micromachines rotating at high speeds require low drag bearings with adequate load capacity and stability. Such bearings must be compatible with the capabilities of microfabrication technology. A self-acting (hydrodynamic) gas thrust bearing was designed, fabricated and tested on a silicon microturbine. Conventional thrust bearing design techniques were adapted from macroscale literature. Microbearing design charts are presented that relate bearing performance to geometry. Such bearings exhibit a design tradeoff between load bearing capability and maximum operating speed (as limited by instabilities). The specific geometry described herein was intended to replace externally pressurized, hydrostatic thrust bearings in an existing device (a 4-mm-diameter silicon microturbine), thus the hydrodynamic bearing design was constrained to be compatible in geometry and fabrication process. The final design consisted of 2.2-/spl mu/m deep by 40-/spl mu/ wide spiral grooves around the 700-/spl mu/m diameter bearing. The bearings were fabricated in silicon with standard RIE and DRIE techniques. Test devices demonstrated lift-off and operation up to 450,000 rpm with a load capacity of 0.03 N. Measurements of load capacity and stiffness were consistent with the analysis.  相似文献   

7.
Interlayer cooling potential in vertically integrated packages   总被引:2,自引:1,他引:1  
The heat-removal capability of area-interconnect-compatible interlayer cooling in vertically integrated, high-performance chip stacks was characterized with de-ionized water as coolant. Correlation-based predictions and computational fluid dynamic modeling of cross-flow heat-removal structures show that the coolant temperature increase due to sensible heat absorption limits the cooling performance at hydraulic diameters ≤200 μm. An experimental investigation with uniform and double-side heat flux at Reynolds numbers ≤1,000 and heat transfer areas of 1 cm2 was carried out to identify the most efficient interlayer heat-removal structure. The following structures were tested: parallel plate, microchannel, pin fin, and their combinations with pins using in-line and staggered configurations with round and drop-like shapes at pitches ranging from 50 to 200 μm and fluid structure heights of 100–200 μm. A hydrodynamic flow regime transition responsible for a local junction temperature minimum was observed for pin fin in-line structures. The experimental data was extrapolated to predict maximal heat flux in chip stacks having a 4-cm2 heat transfer area. The performance of interlayer cooling strongly depends on this parameter, and drops from >200 W/cm2 at 1 cm2 and >50 μm interconnect pitch to <100 W/cm2 at 4 cm2. From experimental data, friction factor and Nusselt number correlations were derived for pin fin in-line and staggered structures.  相似文献   

8.
Heat transfer enhancement using flow-induced vibration of a microfin array   总被引:3,自引:0,他引:3  
Advanced computers are facing thermal engineering challenges from both high heat generation due to rapid performance improvement and the reduction of an available heat removal surface due to large packaging density. Efficient cooling technology is desired to provide reliable operation of microelectronic devices. This paper investigates the feasibility of heat transfer enhancement in laminar flow using the flow-induced vibration of a microfin array. The microfins are initially bent due to the residual stress difference. In order to characterize the dynamics of the microfin flow-induced vibration, a microfin sensor is fabricated. Increase in air velocity provides larger vibrating deflection, while the vibrating frequency of the microfin is independent of the air velocity. The thermal resistances are measured to evaluate the thermal performance of the microfin heat sink and compared with those of a plain-wall heat sink. For a fluid velocity of 4.4 m/s, the thermal resistance of the microfin array heat sink is measured to be 4.45°C/W and that of the plain-wall heat sink to be 4.69°C/W, which indicates a 5.5% cooling enhancement. At a flow velocity of 5.5 m/s, the thermal resistance of the microfin array heat sink is decreased by 11.5%. From the experimental investigations, it is concluded that the vibrating deflection plays a key role in enhancing the heat transfer rate.  相似文献   

9.
强迫对流散热器优化设计   总被引:10,自引:0,他引:10       下载免费PDF全文
本文采用复合形法对形材散热器进行了结构优化设计,开发了相应的优化设计软件,并对部分优化后的散热器进行了实验测试,实验结果与计算值一致,从而证明了优化方法的正确性。  相似文献   

10.
Carbon nanotubes (CNTs) have shown a broad promising application in high mechanical strength and electronic structure. In this work, the effects of coolants on heat transfer capability of on-chip cooling with CNTs Micro-fin Architectures was studied, and the two-dimensional computational fluid dynamics (CFD) simulations have been done for a series of material parameters of coolants in this paper. The influences of thermal conductivity, density, specific heat and viscosity on cooling have been obtained in the case studies. The results demonstrate that pressure drop between the inlet and outlet of the cooling device is dependent on coolant’s density and viscosity. Consequently, it will be necessary to find out a good balance between heat transfer capability and pressure drop. The simulation results also indicate that the heat sink capability will be better if there are more fin rows in the microchannel.  相似文献   

11.
Congestion is a challenging problem in wireless sensor networks, which exacerbates with the high volume of data traffic imposed by video applications such as video surveillance and target tracking. Deployment of multiple sinks is a candidate solution for congestion and is also promising in terms of reliability and energy-efficiency. In order to gain the maximum benefit from multiple sinks, it is essential to distribute the load among them evenly. In this paper, we propose a cross layer geographic forwarding scheme MLBRF (Multi-Sink Load Balanced Reliable Forwarding) which aims to provide reliable and energy efficient video delivery in a multi-sinked sensor network for target tracking. In order to provide load balancing among the sinks, MLBRF proposes a sink selection mechanism based on fuzzy logic for the frame forwarding which evaluates the traffic density in the direction of each sink by combining two dynamic criteria which are the number of contenders and the buffer occupancy levels in the neighborhood with the static distance criterion. The performance of the fuzzy sink selection mechanism is compared using simulation with various sink selection mechanisms. The results show that MLBRF gains the maximum benefit from deploying multiple sinks in terms of reliability, latency and energy efficiency by using the proposed fuzzy sink selection mechanism.  相似文献   

12.
Micromachined jets for liquid impingement cooling of VLSI chips   总被引:2,自引:0,他引:2  
Two-phase microjet impingement cooling is a potential solution for removing heat from high-power VLSI chips. Arrays of microjets promise to achieve more uniform chip temperatures and very high heat transfer coefficients. This paper presents the design and fabrication of single-jets and multijet arrays with circular orifice diameters ranging from 40 to 76 /spl mu/m, as well as integrated heater and temperature sensor test devices. The performance of the microjet heat sinks is studied using the integrated heater device as well as an industry standard 1 cm/sup 2/ thermal test chip. For single-phase, the silicon temperature distribution data are consistent with a model accounting for silicon conduction and fluid advection using convection coefficients in the range from 0.072 to 4.4 W/cm/sup 2/K. For two-phase, the experimental results show a heat removal of up to 90 W on a 1 cm/sup 2/ heated area using a four-jet array with 76 /spl mu/m diameter orifices at a flowrate of 8 ml/min with a temperature rise of 100/spl deg/C. The data indicate convection coefficients are not significantly different from coefficients for pool boiling, which motivates future work on optimizing flowrates and flow regimes. These microjet heat sinks are intended for eventual integration into a closed-loop electroosmotically pumped cooling system.  相似文献   

13.
V型微通道热沉的 流体流动与传热问题研究   总被引:2,自引:0,他引:2  
V型微通道热沉具有体积小、流速小、散热效率高等优点,是将多个DL线阵组装为面阵并实现高性能冷却封装的良好解决方案.本文采用计算流体力学软件Fluent建立了V型微通道的数值模型,研究了其中的流体流动与传热问题.仿真结果表明,设计的V型微通道可满足激光二极管线阵的散热要求.仿真分析结果与V型微通道热沉样品的模拟热源加载实验测试数据对比,吻合较好,证明了数值仿真的有效性.  相似文献   

14.
随着电子设备热流密度的提升,其散热设计越来越重要。文中根据某工程设备,对其热设计展开分析。首先,依照设备技术指标和环境参数,通过相关计算确定了整机散热方式;然后采用了合理布局机箱内热源、合理布局电路板上高热组件、对高热组件加装散热片和热管、机箱内安装风扇等方法,从而完成了对高热组件进行温度控制的设计目标。  相似文献   

15.
为研究预紧力对机床主轴的影响,提出在不同载荷工况下机床主轴预紧力选取的数值分析方法.计算得到预紧力与轴承刚度的关系,在轴系结构有限元模型中设置不同预紧力下的轴承刚度值,通过静力学分析求解轴系变形和刚度;计算得到预紧力与轴承发热量的关系,在轴系热分析有限元模型中设置轴承热源,通过传热分析求解主轴温升.计算结果表明,该方法...  相似文献   

16.
一种相控阵天线强迫风冷热设计方法   总被引:1,自引:0,他引:1  
阵面温度控制是相控阵天线结构设计的关键技术之一。文中针对某相控阵天线的热设计要求,设计了一种用于相控阵天线散热的强迫风冷系统,并采用数值分析方法,对该系统作用下的相控阵天线阵面热性能进行了分析。对不同流道参数、散热器参数和冷却气体流速下的阵面温度和流体压力进行了仿真。仿真结果表明:冷却气体温度和速度对散热效果影响显著,增加散热片的肋片数量和高度能够提高散热性能。以仿真结果为依据,对相控阵天线的结构参数进行了优选。进行了对比实验,验证了仿真计算的有效性。  相似文献   

17.
Bo Liu  Fenghua Qin  Jie Yang 《Advanced Robotics》2014,28(24):1665-1676
In this paper, the propulsive performance of a flexible articulated caudal fin is investigated by fluid–structure interaction. The caudal fin is composed of two links which are connected by a hinge. One link is driven by pitching motion while the other one moves passively. Five cases of link flexibility are investigated, namely, the rigid–rigid case, the medium flexible–medium flexible case, the flexible–flexible case, the rigid–flexible case and the flexible–rigid case. Their fluid field and structure deformations are analysed and hydrodynamic forces are compared. It is found that the rigid–rigid caudal fin produces larger thrust force than other cases with a low-pitching frequency, while the rigid–flexible case performs better with a higher frequency. The mean thrust force increases with the frequency in our experiments, however, for the medium flexible–medium flexible case, an optimal frequency exists. Besides, the effect of the hinge stiffness is studied. It is seen that the medium flexible–medium flexible case exhibits a striking performance. When the hinge stiffness decreases, its mean thrust force increases and possesses larger amplitude while the forces of other cases decrease. These results can guide the design of flexible propeller with links and will be useful for the development of flexible underwater robots.  相似文献   

18.
The performance optimization of an irreversible simple Brayton refrigerator coupled to constant-temperature heat reservoirs is carried out by taking the cooling load density, i.e., the ratio of cooling load to the maximum specific volume in the cycle, as the optimization objective using finite-time thermodynamics (FTT) or entropy generation minimization (EGM) in this paper. The analytical formulae about the relations between cooling load density and pressure ratio, as well as between coefficient of performance (COP) and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers, and the irreversible compression and expansion losses in the compressor and expander. The influences of the effectiveness of the heat exchangers, the temperature ratio of the reservoirs, and the efficiencies of the compressor and expander on the cooling load density versus COP are provided by numerical examples. The cooling load density optimization is performed by searching the optimum pressure ratio of the compressor, and searching the optimum distribution of heat conductance of the hot- and cold-side heat exchangers for the fixed total heat exchanger inventory. The influences of some design parameters, including the effectiveness of the heat exchangers between the working fluid and heat reservoirs, the efficiencies of compressor and expander, the temperature ratio of heat reservoirs, on the maximum cooling load density, the optimum heat conductance distribution and the optimum pressure ratio are provided by numerical examples. The refrigeration plant design with optimization leads to a smaller size including the compressor, expander, and the hot- and cold-side heat exchangers.  相似文献   

19.
Traditional wireless sensor networks (WSNs) with one static sink node suffer from the well-known hot spot problem, that of sensor nodes near the static sink bear more traffic load than outlying nodes. Thus, the overall network lifetime is reduced due to the fact some nodes deplete their energy reserves much faster compared to the rest. Recently, adopting sink mobility has been considered as a good strategy to overcome the hot spot problem. Mobile sink(s) physically move within the network and communicate with selected nodes, such as cluster heads (CHs), to perform direct data collection through short-range communications that requires no routing. Finding an optimal mobility trajectory for the mobile sink is critical in order to achieve energy efficiency. Taking hints from nature, the ant colony optimization (ACO) algorithm has been seen as a good solution to finding an optimal traversal path. Whereas the traditional ACO algorithm will guide ants to take a small step to the next node using current information, over time they will deviate from the target. Likewise, a mobile sink may communicate with selected node for a relatively long time making the traditional ACO algorithm delays not suitable for high real-time WSNs applications. In this paper, we propose an improved ACO algorithm approach for WSNs that use mobile sinks by considering CH distances. In this research, the network is divided into several clusters and each cluster has one CH. While the distance between CHs is considered under the traditional ACO algorithm, the mobile sink node finds an optimal mobility trajectory to communicate with CHs under our improved ACO algorithm. Simulation results show that the proposed algorithm can significantly improve wireless sensor network performance compared to other routing algorithms.  相似文献   

20.
为了在发动机设计阶段降低涡扇发动机的红外辐射强度,建立了一种外涵引气冷却排气系统高温壁面的优化技术,开展了带外涵引气冷却的低红外特征涡扇发动机总体性能优化设计方法研究。首先,建立了带外涵引气冷却的涡扇发动机总体性能计算模型,并分析了非加力状态下引气量对发动机性能参数的影响;其次,提出了基于序列二次规划算法的设计参数多目标优化方法,优化的目标包括高单位推力、低单位油耗和低红外辐射强度;最后,基于以上模型和方法,对设计点非加力情况下的涡扇发动机设计参数进行多目标优化。研究结果表明,相较于传统的涡扇发动机设计参数选取,带外涵引气冷却的涡扇发动机具有更低的红外特性,并且经过多目标优化后,带外涵引气冷却的涡扇发动机在兼顾低红外特征的同时具有更优的总体性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号