首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
综述了酯交换法(包括化学催化法、酶催化法和超临界法)制备生物柴油的机理和最新研究进展,并讨论各种制备方法的优缺点,指出生物柴油的未来发展前景。  相似文献   

2.
超临界酯交换法制备生物柴油的研究   总被引:1,自引:0,他引:1  
综述了超临界酯交换法制备生物柴油的反应机理及动力学、影响因素、生产工艺及与其他酯交换法的比较,其中影响因索包括反应温度、醇油比、反应压力、反应时间、游离脂肪酸、水、原料油、醇和共溶剂。并重点对这些影响因素进行分析比较,结果表明,反应温度选择350℃;醇油比通常取42:1;当温度在280—295℃时,反应压力对转化率影响不大,温度350℃时,反应压力对转化率影响较大;反应时间30min,原料油中含游离脂肪酸和水对转化率影响均不大;原料油中不饱和度高的组分反应速度快于饱和度高的组分;在超临界区烃链越短的醇反应速度越快;加入共溶剂可降低反应苛刻度。与其他酯交换法相比,超临界酯交换法具有反应速度快、不需催化剂、成本低和环境友好等特点。  相似文献   

3.
米糠油酯交换反应制备生物柴油的研究   总被引:2,自引:0,他引:2  
以米糠油和甲醇为原料,在硫酸催化剂作用下进行预酯化,在碱催化剂(氢氧化钾)下进行酯交换反应制备生物柴油.考察酯交换反应过程中甲醇与米糠油物质的量比、反应温度、反应时间及催化剂用量(以米糠油质量计)对生物柴油产率的影响.结果表明,在甲醇与米糠油物质的量比为6:1、反应温度为65℃、反应时间为1.5 h及催化剂用量为1.5...  相似文献   

4.
在反应蒸馏装置中对植物油与甲醇的酯交换反应合成生物柴油进行了研究,结果表明,此工艺具有反应速度快、平衡转化率和选择性高、甘油沉降速度快等特点。与流行的两级甚至三级酯交换反应技术相比,本工艺仅通过一段酯交换反应就能达到相同的反应效果。  相似文献   

5.
综述了超临界流体法制备生物柴油技术,主要介绍了超临界流体法制备生物柴油的流程、工艺条件、反应动力学、原料中的水和游离脂肪酸对酯交换反应的影响,并概述了超临界流体法的优势、问题及发展前景.  相似文献   

6.
在500mL的酯交换反应和甘油分离耦合实验装置上进行了大豆油制备生物柴油的试验和反应条件的研究。结果表明,在反应温度60℃、醇油摩尔比4.5~ 5.0、进料速度500~2 000 mL/h和催化剂质量分数0.50%~0.75%(相对于油)的条件下,制备的生物柴油中脂肪酸甲酯相对含量不低于97%。此工艺具有反应速度快、平衡转化率和选择性高的特点。所制备的生物柴油及其与-10号柴油的调合产品B5都分别满足国标要求。  相似文献   

7.
生物柴油的制备方法及研究进展   总被引:6,自引:0,他引:6  
本文扼要介绍了生物柴油与矿物柴油相比所具有的优点,以及目前生物柴油需要改善和解决的问题。详细介绍了生产和使用生物柴油的四种方法:直接或混合使用法、微乳化法、热解法、酯交换法。以及各种方法的研究情况及其产品特点。  相似文献   

8.
超临界法制备生物柴油   总被引:18,自引:0,他引:18  
探索了温度、甲醇和油脂摩尔比、不同碳链的醇以及水和游离脂肪酸对超临界甲醇法制备生物柴油的影响。结果表明:300℃1、5MPa、醇油摩尔比15和1 h的反应时间较为合理。同时发现,油料中所含水和游离脂肪酸对普通的酸、碱催化法有较大影响,对超临界法则没有明显影响。经过减压精馏、水洗和干燥后的生物柴油产品性能符合美国生物柴油标准。  相似文献   

9.
采用离子交换法,以4种不同碳链长度的季铵盐对钠基蒙脱土进行插层改性,并采用FT-IR、XRD对改性蒙脱土进行表征;考察了其在大豆油与甲醇酯交换合成生物柴油反应中的催化性能。结果表明,4种季胺盐改性蒙脱土催化剂中,四甲基溴化铵改性蒙脱土对大豆油与甲醇酯交换反应的催化活性最高。以此改性蒙脱土为催化剂,在催化剂质量分数(以大豆油质量计)1.5%、醇/油质量比12、反应温度65℃、反应时间5 h条件下,大豆油与甲醇酯交换反应生物柴油产率达到91.2%。该催化剂重复使用7次后活性并无明显下降,表明有机改性蒙脱土是一种潜在的制备生物柴油的有机-无机复合催化材料。  相似文献   

10.
以菜籽油、大豆油、调和油为植物油原料,通过甲醇酯交换反应制备了生物柴油脂肪酸甲酯。用气相色谱分析方法,考察了反应温度、醇油摩尔比、KOH催化剂用量和反应时间对生物柴油收率的影响。结果表明,由不同植物油原料所得的生物柴油收率达到最大值时,其共有的最佳工艺条件为:四氢呋喃(THF)作共溶剂,KOH作催化剂,反应温度60℃,n(甲醇)/n(植物油)值6,反应时间15 min;因植物油原料的酸值不同,致使其在最佳工艺条件下的KOH催化剂加入质量分数和生物柴油收率最大值不同,菜籽油、大豆油、调和油所需的KOH催化剂加入质量分数分别为1.0%,1.0%,0.9%,相应的生物柴油收率最大值分别为97.2%,97.5%,98.3%。  相似文献   

11.
固体碱SrO-La2O3催化大豆油合成生物柴油   总被引:1,自引:0,他引:1  
采用共沉淀法制备了SrO—La2O3复合氧化物固体碱催化剂,用于催化大豆油与甲醇的酯交换反应,并考察了催化剂制备方法及制备条件对大豆油转化率的影响。结果表明,采用共沉淀法、以氨水为沉淀剂,催化剂中Sr与La摩尔比1.5:1,催化剂焙烧温度973K条件下显示出固体碱催化剂的最佳催化活性和稳定性。考察了酯交换反应条件对大豆油转化率的影响,结果表明,在甲醇沸点温度下,醇油摩尔比15:1、催化剂用量占反应物总量3%、反应时间4h的最佳条件下,大豆油转化率最高达92.63%。考察了SrO—La2O3固体碱催化剂重复使用性能,结果表明,当催化剂重复使用3次后,再用773K温度活化2h后,催化剂活性仍保持90%以上,经5次重复利用后大豆油转化率仍能保持在90%左右。  相似文献   

12.
采用共沉淀法合成了镁铝水滑石,以其为载体负载K2CO3制备了负载型镁铝水滑石催化剂,用于菜籽油酯交换合成生物柴油。研究了未负载活性组分时,镁铝水滑石和焙烧后得到的镁铝复合氧化物对酯交换反应的催化活性,以及负载K2CO3后,活性组分负载量对催化剂活性的影响,并利用X射线衍射表征了焙烧前后以及负载K2CO3前后催化剂物相结构的变化。实验发现,水滑石载体和K2CO3在高温焙烧后形成的钾铝和镁钾氧化物是催化剂碱性和活性提高的重要原因。进一步优化了活性组分负载量和酯交换反应条件,以镁铝水滑石为载体,负载25%的K2CO3作为催化剂,在催化剂用量2%,醇油摩尔比12∶1,反应温度60℃,反应时间1.5h时,油脂转化率高达99%。  相似文献   

13.
KF/CaO催化剂催化大豆油酯交换反应制备生物柴油   总被引:66,自引:9,他引:66  
孟鑫  辛忠 《石油化工》2005,34(3):282-286
采用等体积浸渍法制备了KF/CaO催化剂,并将其用于催化大豆油与甲醇酯交换反应制备生物柴油。考察了催化剂制备条件和反应条件对酯交换反应的影响。实验结果表明,通过等体积浸渍并在873K煅烧4h,可以制得理想的KF添加量(KF与CaO的质量比)为14.3%的KF/CaO催化剂,采用该催化剂,当醇与油摩尔比为12∶1、催化剂用量(催化剂与油的质量比)为3%、反应温度为60~65℃、反应时间为1h时,生物柴油的收率可以达到90%。与CaO催化的酯交换反应结果相比,KF/CaO催化剂的催化活性明显提高。XRD与TG-DTG分析结果表明,KF/CaO催化剂酯交换活性的增强与KF与CaO经过高温煅烧发生相互作用而形成新的晶相密切相关。  相似文献   

14.
超声波辅助下海滨锦葵油制备生物柴油工艺的优化   总被引:3,自引:0,他引:3  
以海滨锦葵油为原料、KOH 为催化剂,在超声波辅助下制备了生物柴油。通过单因素实验及正交实验研究了超声波频率、超声波功率、催化剂用最、反应温度、醇了油摩尔比等因素对酯交换率的影响实验结果表明,各影响因素对酯交换率影响的大小顺序为:超声波功率>催化剂用量>反应温度>醇与油摩尔比。海滨锦葵油在超声波辅助下制备生物柴油的最佳工艺条件为:超声波频率45 Hz、超声波功率180 W、催化剂 KOH 用量为海滨锦葵油质量的0.6%、反应温度65℃、醇与油摩尔比7,在该条件下酯交换率达到99.85%。  相似文献   

15.
酯交换法合成碳酸二甲酯催化剂及反应机理的研究进展   总被引:1,自引:3,他引:1  
介绍了近年来一步法酯交换合成碳酸二甲酯催化剂的研究进展。重点讨论了以金属配合物、金属盐、卤化季铵盐、离子液体为催化剂时,环氧烷烃、CO_2与甲醇经两步法合成碳酸二甲酯过程中环加成反应和酯交换反应的机理。在分析两步法酯交换合成碳酸二甲酯反应机理的基础上,对一步法反应机理进行了探讨,认为开发高活性的均相催化剂及负载型非均相催化剂,对促进一步法工业化生产应用具有指导性意义。  相似文献   

16.
负载型固体碱催化棕榈油酯交换制备生物柴油   总被引:2,自引:0,他引:2  
采用浸渍法制备了KF/CaO,K2CO3/CaO,KF/γ-Al2O3,K2CO3/γ-Al2O34种负载型固体碱催化剂。考察了催化剂种类对棕榈油与甲醇进行酯交换反应的影响,并研究了催化剂重复使用的可能性。实验结果表明,4种催化剂均具有较高的活性,在催化剂中活性组分负载量为20.0%(相对于载体的质量分数)、n(甲醇):n(棕榈油)=12、m(催化剂):m(棕榈油)=0.09、反应温度65℃、反应时间6h的条件下,生物柴油的收率依次为97.3%,93.4%,77.7%,96.2%。以CaO为载体的催化剂再生后活性较低,而以γ-Al2O3为载体的催化剂再生后活性较高。X射线衍射和热重-差热分析结果显示,催化剂活性的差异与煅烧过程中活性组分和载体相互作用形成的新晶相有关,再生后催化活性的降低是由于活性组分流失所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号