首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. M. Urbani 《Calcolo》1976,13(4):369-376
In this paper a procedure for the acceleration of the convergence is given. It allows the doubling of the order of the multistep methods for the numerical solution of the systems of ordinary differential equations: $$Y' = F(x,Y); Y_0 = Y(x_0 ) \begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \in [a,b]$$ whereY andF(x,Y) aret-vectors.  相似文献   

2.
F. Costabile 《Calcolo》1974,11(2):191-200
For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

3.
F. Costabile 《Calcolo》1973,10(2):101-116
For the numerical integration of the problem with initial value $$y' = f(x,y),y(x_0 ) = y_0 ,\begin{array}{*{20}c} {\begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \in [a,b],} \\ \end{array} $$ the pseudo R. K. methods of second kind are taken again and approximations are drawn, that in particular casef(x, y)≡f(x) are reduced to quadrature formulae of Radau and Lobatto. The limits of the trancation's error and the stability's intervals of the pseudo R. K. methods of the first and second species with the approximations of the same order of R. K. are determined and compared. At the end of that, a numerical example is taken.  相似文献   

4.
F. Costabile  A. Varano 《Calcolo》1981,18(4):371-382
In this paper a detailed study of the convergence and stability of a numerical method for the differential problem $$\left\{ \begin{gathered} y'' = f(x,y) \hfill \\ y(x_0 ) = y_0 \hfill \\ y'(x_0 ) = y_0 ^\prime \hfill \\ \end{gathered} \right.$$ has carried out and its truncation error estimated. Some numerical experiments are described.  相似文献   

5.
In this paper we study quadrature formulas of the form $$\int\limits_{ - 1}^1 {(1 - x)^a (1 + x)^\beta f(x)dx = \sum\limits_{i = 0}^{r - 1} {[A_i f^{(i)} ( - 1) + B_i f^{(i)} (1)] + K_n (\alpha ,\beta ;r)\sum\limits_{i = 1}^n {f(x_{n,i} ),} } } $$ (α>?1, β>?1), with realA i ,B i ,K n and real nodesx n,i in (?1,1), valid for prolynomials of degree ≤2n+2r?1. In the first part we prove that there is validity for polynomials exactly of degree2n+2r?1 if and only if α=β=?1/2 andr=0 orr=1. In the second part we consider the problem of the existence of the formula $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(x)dx = A_n f( - 1) + B_n f(1) + C\sum\limits_{i = 1}^n {f(x_{n,i} )} }$$ for polynomials of degree ≤n+2. Some numerical results are given when λ=1/2.  相似文献   

6.
L. Rebolia 《Calcolo》1973,10(3-4):245-256
The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

7.
In this paper we study quadrature formulas of the types (1) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = C_n^{ (\lambda )} \sum\limits_{i = 1}^n f (x_{n,i} ) + R_n \left[ f \right]} ,$$ (2) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = A_n^{ (\lambda )} \left[ {f\left( { - 1} \right) + f\left( 1 \right)} \right] + K_n^{ (\lambda )} \sum\limits_{i = 1}^n f (\bar x_{n,i} ) + \bar R_n \left[ f \right]} ,$$ with 0<λ<1, and we obtain inequalities for the degreeN of their polynomial exactness. By using such inequalities, the non-existence of (1), with λ=1/2,N=n+1 ifn is even andN=n ifn is odd, is directly proved forn=8 andn≥10. For the same value λ=1/2 andN=n+3 ifn is evenN=n+2 ifn is odd, the formula (2) does not exist forn≥12. Some intermediary results regarding the first zero and the corresponding Christoffel number of ultraspherical polynomialP n (λ) (x) are also obtained.  相似文献   

8.
C. Dagnino 《Calcolo》1973,9(4):279-292
This work faces the problem of the numerical treatment on digital computers of boundary value problems of the type: $$y'' = f(x,y); y(a) = A,y(b) = B$$ through the reduction into the equivalent integral equation: $$y(x) = \mathop \smallint \limits_a^b g_K (x,\xi )[K^2 y(\xi ) - f(\xi ,y(\xi ))]d\xi $$ whereg K (x,ξ) is the Green function associated to the differential operator \(\frac{{d^2 }}{{dx^2 }} - K^2 \) . I have extended to this problem a discrete analogue of higher accuracy introduced in [1] with reference to a boundary value problem analised under a differential point of view: this extention costitutes the original part of the work. The above problem is analysed with reference to the discretization error and the convergence of the discrete analogue solution algorithm; the actnal numerical treatment of a few systems follows.  相似文献   

9.
In this paper we construct an interpolatory quadrature formula of the type $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 \frac{{f'(x)}}{{y - x}}dx \approx \sum\limits_{i = 1}^n {w_{ni} (y)f(x_{ni} )} ,$$ wheref(x)=(1?x)α(1+x)β f o(x), α, β>0, and {x ni} are then zeros of then-th degree Chebyshev polynomial of the first kind,T n (x). We also give a convergence result and examine the behavior of the quantity \( \sum\limits_{i = 1}^n {|w_{ni} (y)|} \) asn→∞.  相似文献   

10.
F. Costabile 《Calcolo》1971,8(1-2):61-75
For the numerical integration of the ordinary differential equation $$\frac{{dy}}{{dx}} = F(x,y) y(x_0 ) = y_0 \begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \varepsilon [a,b]$$ a third method utilizing only two points for every step, is determined different from the analogous Runge-Kutta method employing three points; it is useless take the first step as the «pseudo Runge-Kutta method». The truncation error is given, the convergence is proved and finally a numerical exercise is given.  相似文献   

11.
P. Marzulli 《Calcolo》1969,6(3-4):425-436
In a previous paper the numerical solution of a particular boundary-value problem for the «weakly linear» equation $$\Delta \left[ {u(P)} \right] = f(P,u)$$ was obtained and the convergence of a suitable finite-difference scheme was proved. This paper is concerned with the more general equation $$L\left[ {u(P)} \right] = f(P,u)$$ where $$L \equiv - \left[ {a\frac{\partial }{{\partial x^2 }} + c\frac{\partial }{{\partial y^2 }} + d\frac{\partial }{{\partial x}} + e\frac{\partial }{{\partial y}}} \right]$$ ; the solution is obtained using the same finite-difference scheme as in the previous paper, and sufficient condition for its convergence are given for this new case  相似文献   

12.
One of the main objectives of interval computations is, given the functionf(x 1, ...,x n ), andn intervals $\bar x_1 ,...,\bar x_n$ , to compute the range $\bar y = f(\bar x_1 ,...,\bar x_n )$ . Traditional methods of interval arithmetic compute anenclosure $Y \supseteq \bar y$ for the desired interval $\bar y$ , an enclosure that is often an overestimation. It is desirable to know how close this enclosure is to the desired range interval. For that purpose, we develop a new interval formalism that produces not only the enclosure, but also theinner estimate for the desired range $\bar y$ , i.e., an interval y such that $y \subseteq \bar y$ . The formulas for this new method turn out to be similar to the formulas of Kaucher arithmetic. Thus, we get a new justification for Kaucher arithmetic.  相似文献   

13.
Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising language for the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. CRNs have been shown to be efficiently Turing-universal (i.e., able to simulate arbitrary algorithms) when allowing for a small probability of error. CRNs that are guaranteed to converge on a correct answer, on the other hand, have been shown to decide only the semilinear predicates (a multi-dimensional generalization of “eventually periodic” sets). We introduce the notion of function, rather than predicate, computation by representing the output of a function \({f:{\mathbb{N}}^k\to{\mathbb{N}}^l}\) by a count of some molecular species, i.e., if the CRN starts with \(x_1,\ldots,x_k\) molecules of some “input” species \(X_1,\ldots,X_k, \) the CRN is guaranteed to converge to having \(f(x_1,\ldots,x_k)\) molecules of the “output” species \(Y_1,\ldots,Y_l\) . We show that a function \({f:{\mathbb{N}}^k \to {\mathbb{N}}^l}\) is deterministically computed by a CRN if and only if its graph \({\{({\bf x, y}) \in {\mathbb{N}}^k \times {\mathbb{N}}^l | f({\bf x}) = {\bf y}\}}\) is a semilinear set. Finally, we show that each semilinear function f (a function whose graph is a semilinear set) can be computed by a CRN on input x in expected time \(O(\hbox{polylog} \|{\bf x}\|_1)\) .  相似文献   

14.
Dr. K. Taubert 《Computing》1981,27(2):123-136
Every consistent and strongly stable multistep method of stepnumberk yields a solution, of the setvalued initial value problem \(\dot y \in F(t,y),y(t_0 ) = y_0 \) . The setF(t, z) is assumed to be nonvoid, convex and closed. Upper semicontinuity of F with respect to both variables is not required everywhere. If the initial value problem is uniquely solvable, the solutions of the multistep method will converge to the solution of the continuous problem. These results carry over to functional differential equations \(\dot y \in F(t,M_t y)\) of Volterra type and to discontinuous problems \(\dot y(t) = f(t,M_t y)\) in the sense of A.F. Filippov. A difference method is applied to the discontinuous delay equation \(\ddot x(t) + 2D\dot x(t) + \omega ^2 x(t) = = - \operatorname{sgn} (x(t - \tau ) + \dot x(t - \tau ))\) . In the limit τ→0 we obtain results for the problem \(\ddot x + 2D\dot x + \omega ^2 x = = - \operatorname{sgn} (x + \dot x)\) which cannot be solved classically everywhere.  相似文献   

15.
L. Lopez 《Calcolo》1986,23(3):249-263
In this paper we propose some implicit methods for stiff Volterra integral equations of second kind. The methods are constructed on the integro-differential equation obtained by differentiation of the Volterra equation. The numerical schemes are derived using a class of A-stable and L-stable methods for ordinary differential equations (proposed by Liniger and Willoughby in [3]) associated with the Gregory quadrature formula. Related to the test equation: $$y(t) = 1 + \int_0^t {[\lambda + \mu (t - s)] y(s)ds \lambda , \mu< 0} $$ we give the definition ofA-stability and ?-stability for the proposed numerical methods how natural extension of the A-stability and L-stability for the schemes for solving ordinary differential equations. We show how we have to choose the parameters of the methods in order to obtainA-stability and ?-stability schemes. Because of these properties the proposed schemes are particularly advantageous in the case of stiff Volterra integral equations.  相似文献   

16.
F. Costabile 《Calcolo》1975,12(3):249-258
Numerical integration of problem: $$y'' = f(x,y),y(a) = y_0 ,y'(a) = y'_0 $$ is purposed. A method withouty′(x) calculation is attained.  相似文献   

17.
P. Baratella 《Calcolo》1977,14(3):237-242
In this paper we study the remainder term of a quadrature formula of the form $$\int\limits_{ - 1}^1 {f(x)dx = A_n \left[ {f( - 1) + f(1)} \right] + C_n \sum\limits_{i = 1}^n {f(x_{n,i} ) + R_n \left[ f \right],} } $$ , withx x,i -1,1, andR n [f]=0 whenf(x) is a polynomial of degree ≤n+3 ifn is even, or ≤n+2 ifn is odd. Such a formula exists only forn=1(1)11. It is shown that, iff(x)∈ C(h+1) [-1,1], (h=n+3 orn+2), thenR n [f]=f h+1 (τ)·± n . The values α n are given.  相似文献   

18.
In the first part of this work, we derive compact numerical quadrature formulas for finite-range integrals $I[f]=\int^{b}_{a}f(x)\,dx$ , where f(x)=g(x)|x?t| ?? , ?? being real. Depending on the value of ??, these integrals are defined either in the regular sense or in the sense of Hadamard finite part. Assuming that g??C ??[a,b], or g??C ??(a,b) but can have arbitrary algebraic singularities at x=a and/or x=b, and letting h=(b?a)/n, n an integer, we derive asymptotic expansions for ${T}^{*}_{n}[f]=h\sum_{1\leq j\leq n-1,\ x_{j}\neq t}f(x_{j})$ , where x j =a+jh and t??{x 1,??,x n?1}. These asymptotic expansions are based on some recent generalizations of the Euler?CMaclaurin expansion due to the author (A.?Sidi, Euler?CMaclaurin expansions for integrals with arbitrary algebraic endpoint singularities, in Math. Comput., 2012), and are used to construct our quadrature formulas, whose accuracies are then increased at will by applying to them the Richardson extrapolation process. We pay particular attention to the case in which ??=?2 and f(x) is T-periodic with T=b?a and $f\in C^{\infty}(-\infty,\infty)\setminus\{t+kT\}^{\infty}_{k=-\infty}$ , which arises in the context of periodic hypersingular integral equations. For this case, we propose the remarkably simple and compact quadrature formula $\widehat{Q}_{n}[f]=h\sum^{n}_{j=1}f(t+jh-h/2)-\pi^{2} g(t)h^{-1}$ , and show that $\widehat{Q}_{n}[f]-I[f]=O(h^{\mu})$ as h??0 ???>0, and that it is exact for a class of singular integrals involving trigonometric polynomials of degree at most n. We show how $\widehat{Q}_{n}[f]$ can be used for solving hypersingular integral equations in an efficient manner. In the second part of this work, we derive the Euler?CMaclaurin expansion for integrals $I[f]=\int^{b}_{a} f(x)dx$ , where f(x)=g(x)(x?t) ?? , with g(x) as before and ??=?1,?3,?5,??, from which suitable quadrature formulas can be obtained. We revisit the case of ??=?1, for which the known quadrature formula $\widetilde{Q}_{n}[f]=h\sum^{n}_{j=1}f(t+jh-h/2)$ satisfies $\widetilde{Q}_{n}[f]-I[f]=O(h^{\mu})$ as h??0 ???>0, when f(x) is T-periodic with T=b?a and $f\in C^{\infty}(-\infty,\infty)\setminus\{t+kT\}^{\infty}_{k=-\infty}$ . We show that this formula too is exact for a class of singular integrals involving trigonometric polynomials of degree at most n?1. We provide numerical examples involving periodic integrands that confirm the theoretical results.  相似文献   

19.
This paper deals with the approximation of \(d\) -dimensional tensors, as discrete representations of arbitrary functions \(f(x_1,\ldots ,x_d)\) on \([0,1]^d\) , in the so-called tensor chain format. The main goal of this paper is to show that the construction of a tensor chain approximation is possible using skeleton/cross approximation type methods. The complete algorithm is described, computational issues are discussed in detail and the complexity of the algorithm is shown to be linear in \(d\) . Some numerical examples are given to validate the theoretical results.  相似文献   

20.
In this note we consider the numerical evaluation of one dimensional Cauchy principal value integrals of the form $$\rlap{--} \smallint _a^b \frac{{k(x)f(x)}}{{x - \lambda }}dx, a< \lambda< b,$$ by rules obtained by “subtracting out” the singularity and then applying product quadratures based on cubic spline interpolation at equally spaced nodes. Convergence results are established for Hölder continuous functions of order, μ, 0<μ≤1, and asymptotic rates are obtained for functionsf≠C k [a, b],k=1, 2, 3 or 4. Some comparisons with other methods and numerical examples are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号