首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using an in vitro model simulating the potential opportunities for Salmonella enterica serovar Enteritidis (SE) to proliferate within eggs contaminated with this organism following oviposition, we investigated growth of SE in eggs. Seventy to 140 CFU of one of three SE strains originating either from egg contents, chicken meat, or a human infection were experimentally inoculated onto the vitelline membrane of eggs collected from specific-pathogen-free flocks of chickens and incubated at 25 degrees C. SE organisms were detected in 6 of 71 yolk contents of the eggs inoculated with any of the test strains attaining levels ranging from 2.0 x 10(2) to 4.2 x 10(8) CFU/ml by day 6. The organisms were also detected in the albumen from 38 of 55 eggs tested, growing to levels ranging from 1.0 x 10(2) to 4.3 x 10(8) CFU/ml by day 6 after inoculation. An additional three yolk contents and 15 albumen samples were culture positive for SE following enrichment. There was no correlation between the number of the organisms in the yolk contents and that in the albumen from each of the eggs. When 73 to 91 CFU of the egg strain were inoculated into samples of separated albumen obtained from eggs that were stored at 4 degrees C for 1 to 4 weeks or at 25 degrees C for 1 week, slight growth (3.0 x 10(2) to 7.4 x 10(3) CFU/ml) was found in only 3 of the 60 albumen samples by day 6 after inoculation, but the organisms were recovered from 52 samples following enrichment. The results suggest that the environment on or near the vitelline membrane can be conducive to SE proliferation over time.  相似文献   

2.
Prompt refrigeration to restrict bacterial growth is important for reducing eggborne transmission of Salmonella enterica serovar Enteritidis (SE). The nutrient-rich yolk interior is a relatively infrequent location for initial SE deposition in eggs, but migration across the vitelline membrane can result in rapid bacterial multiplication during storage at warm temperatures. The objective of the present study was to measure the multiplication of SE in yolks after introduction at three different locations and subsequent storage at a range of temperatures. Using an in vitro egg contamination model, approximately 100 CFU of SE was inoculated either inside yolks, onto the exterior surface of vitelline membranes, or into the adjacent albumen. After storage of samples from each inoculation group at 10, 15, 20, and 25°C for 24 h, SE was enumerated in yolks. For all three inoculation locations, the final SE levels in yolks increased significantly with increasing storage temperatures. At all storage temperatures, significant differences in SE multiplication were observed between inoculation sites (yolk inoculation>vitelline membrane inoculation>albumen inoculation). At 25°C, final log concentrations of 7.759 CFU of SE per ml (yolk inoculation), 2.014 CFU/ml (vitelline membrane inoculation), and 0.757 CFU/ml (albumen inoculation) were attained in yolks after storage. These results demonstrate that, even when the initial site of SE deposition is outside the egg yolk, substantial multiplication supported by yolk nutrients can occur during the first day of storage and the risk of bacterial growth increases at higher ambient storage temperatures.  相似文献   

3.
Refrigeration of eggs is vital for restricting the multiplication of Salmonella enterica serotype Enteritidis contaminants, but differences between Salmonella Enteritidis strains or phage types in their survival and multiplication patterns in egg contents might influence the effectiveness of refrigeration standards. The present study compared the abilities of 12 Salmonella Enteritidis isolates of four phage types (4, 8, 13a, and 14b) to multiply rapidly in egg yolk and to survive for several days in egg albumen. The multiplication of very small numbers of Salmonella Enteritidis inoculated into yolk (approximately 10(1) CFU/ml) was monitored during 24 h of incubation at 25 degrees C, and the survival of much larger numbers of Salmonella Enteritidis inoculated into albumen (approximately 10(5) CFU/ml) was similarly evaluated during the first 3 days of incubation at the same temperature. In yolk, the inoculated Salmonella Enteritidis strains multiplied to mean levels of approximately 10(3) CFU/ml after 6 h of incubation and 10(8) CFU/ml after 24 h. In albumen, mean levels of approximately 10(4) CFU/ml or more of Salmonella Enteritidis were maintained through 72 h. Although a few differences in multiplication and survival were observed between individual isolates, the overall range of values was relatively narrow, and no significant differences (P < 0.05) were evident among phage types.  相似文献   

4.
This study was undertaken to determine the influence of storage time and temperature on the volume, weight, and pH of egg albumen, the physical strength of vitelline membrane, and the fate of Salmonella Enteritidis artificially inoculated into egg albumen. A fiber-optic probe was used for inoculation with Salmonella Enteritidis at 10(2), 10(4), or 10(6) cells per egg. Both fresh and inoculated eggs were stored at 4, 10, and 22 degrees C for 6 weeks. Five fresh uninoculated eggs from each storage group were collected each week, and the weight, volume, and pH of the egg albumen were measured. The forces, energies, and degrees of membrane deformation required to rupture the vitelline membranes also were determined from either albumen-free yolks or yolks surrounded by albumen. In separate experiments, five inoculated eggs were evaluated each week for populations of Salmonella Enteritidis. When the eggs were stored at 4 degrees C, the albumen retained significantly more volume and weight and had a relatively lower pH. The vitelline membranes from eggs stored at 4 and 10 degrees C required more force and energy for rupture. Salmonellae flourished at 22 degrees C, even in the albumen with the lowest initial population, 10(2) cells per egg. Storage at 4 and 10 degrees C inhibited the growth of salmonellae in the albumen of eggs with initial populations of 10(2), 10(4), or 10(6) cells per egg. In eggs with initial Salmonella populations of 10(6) cells per egg that were stored at 22 degrees C, the populations of reached as high as 10(10) cells per egg after 4 weeks of storage. Storage at 4 and perhaps 10 degrees C postponed the aging process of chicken eggs, preserved the antimicrobial agents of the albumen, and maintained the integrity of vitelline membrane. Low-temperature storage therefore had a significant impact on the safety and overall quality of the eggs.  相似文献   

5.
The growth response of Salmonella Enteritidis (SE) on the vitelline membrane in vitro was studied with the use of a special tube devised specifically for the inoculation of SE onto the vitelline membrane and for the sampling of the yolk near the inoculation site. This latter ability allowed the detection of the movement of SE into the yolk. The growth of SE on the membrane was compared with that of SE inoculated into yolk and albumen in vitro and in ovo in fresh in-shell eggs. The incubation time was 2 days, and the incubation temperatures were 4, 8, 15, 27, and 37 degrees C. Comparison of the results obtained for in vitro growth showed that at 4, 8, and 15 degrees C, SE behaved as if it were in the albumen, with its numbers decreasing over time. At 27 and 37 degrees C, SE grew as if it were in yolk, with a maximum increase of 4.5 log CFU after 2 days at 37 degrees C. In no experiments involving growth on the vitelline membrane did SE appear in the yolk. Comparisons between in vitro and in ovo growth responses of SE in yolk and albumen indicate that SE growth on the membrane parallels that in the in-shell egg.  相似文献   

6.
Salmonella enterica serovar Typhimurium has been isolated from commercial egg production facilities in the United States. Given its importance as a causative organism for food-borne salmonellosis, identifying approximate timelines for bacterial invasion of the egg is needed. The objective of this study was to examine net growth of S. Typhimurium in egg components over time. In trial 1 eggs were collected over a 24 hour period from a flock of single comb white leghorn hens while in trial 2 eggs were picked up from a commercial laying source once a week over the course of eight weeks and stored. Eggs were held at refrigeration temperature and each week, subsets of eggs were cracked, separated into yolk and albumen components, and inoculated with 108 CFU/ml of novobiocin and nalidixic acid (NO/NA) resistant S. Typhimurium onto the vitelline membrane of the egg. Yolks were then covered with albumen. Eggs were incubated for twenty-four hours at 25°C. After incubation eggs were again separated into albumen, yolk, and vitelline membrane samples. In trial 1, S. Typhimurium net growth occurred in albumen by the second week and continued from 4 to 8 weeks while in trial 2 net growth only occurred at week 5 and 7. S. Typhimurium net growth on vitelline membranes occurred by 2 weeks and continued from 4 to 8 weeks in trial 1 while no net growth occurred in trial 2 over the 8 week period. Yolk samples showed no net increases in S. Typhimurium populations over the 8 week period. An erratum to this article is available at .  相似文献   

7.
Salmonella enterica serovar Typhimurium has been isolated from commercial egg production facilities in the United States. Given its importance as a causative organism for food-borne salmonellosis, identifying approximate timelines for bacterial invasion of the egg is needed. The objective of this study was to examine net growth of S. Typhimurium in egg components over time. In trial 1 eggs were collected over a 24 hour period from a flock of single comb white leghorn hens while in trial 2 eggs were picked up from a commercial laying source once a week over the course of eight weeks and stored. Eggs were held at refrigeration temperature and each week, subsets of eggs were cracked, separated into yolk and albumen components, and inoculated with 108 CFU/ml of novobiocin and nalidixic acid (NO/NA) resistant S. Typhimurium onto the vitelline membrane of the egg. Yolks were then covered with albumen. Eggs were incubated for twenty-four hours at 25°C. After incubation eggs were again separated into albumen, yolk, and vitelline membrane samples. In trial 1, S. Typhimurium net growth occurred in albumen by the second week and continued from 4 to 8 weeks while in trial 2 net growth only occurred at week 5 and 7. S. Typhimurium net growth on vitelline membranes occurred by 2 weeks and continued from 4 to 8 weeks in trial 1 while no net growth occurred in trial 2 over the 8 week period. Yolk samples showed no net increases in S. Typhimurium populations over the 8 week period.  相似文献   

8.
《Food microbiology》2004,21(1):25-32
Different Salmonella enterica serovars, including Enteritidis, were tested for growth at 20°C in separated albumen upon inoculation with 39 cfu ml−1. The albumen was fresh or stored for up to 3 weeks prior to inoculation (p.i.) either in the shell egg or separated from the yolk. The serovar Enteritidis did not behave differently than the other serovars indicating that the association between human S. Enteritidis infections and eggs is not due to its growth behaviour in albumen. A pronounced growth occurred more frequently and up to a one-log unit higher level in fresh albumen than in albumen stored p.i. This was at least partly explained by a pH effect. Since growth in the separated albumen was similar when the albumen had been stored p.i. in the absence or presence of yolk, we have no indication that nutrients or factors negating the inhibitory properties of the albumen leak out from the yolk during storage. Growth of Salmonella inoculated at a level of 8 cfu in the albumen of fresh and stored whole shell eggs was studied to simulate a more natural situation. In this case, growth also occurred more frequently when inoculated in the albumen of fresh eggs compared to eggs stored p.i. It can be concluded from our study that cooling practices are recommended shortly after lay to prevent Salmonella from growing in eggs.  相似文献   

9.
This study was undertaken to determine the levels of Salmonella Enteritidis in artificially inoculated eggs as affected by the temperatures under which eggs might be held from the day of lay until the day of processing. Unprocessed chicken eggs of different sizes (n=1920, with 480 being laid in each season) were inoculated in the albumen with a five-strain mixture of Salmonella at 102 CFU per egg. The eggs were stored at 4, 10, and 22 degrees C for 3 weeks and sampled twice a week to determine the populations of Salmonella and total aerobic bacteria. The season in which eggs were laid did not significantly impact the growth of the pathogen (P > 0.05). The mean populations of the inoculated Salmonella were not significantly different in eggs stored at 4 versus 10 degrees C (P > 0.05). Eggs stored at 22 degrees C had a mean Salmonella population that was 3.71 or 3.37 log higher than the Salmonella population of eggs stored at 4 or 10 degrees C (P > 0.05). The mean Salmonella population at 22 degrees C increased from the initial 2.12 log CFU/ml to 3.36 log CFU/ml after 2 weeks of storage and to 7.84 log CFU/ml after 3 weeks of storage. A sharp increase in the population of Salmonella occurred after 2 to 2.5 weeks of storage at 22 degree C. This study provided a scientific basis for the current egg handling and transporting temperature requirements and reinforced the importance of maintaining low temperatures in controlling and preventing the growth of Salmonella Enteritidis in eggs from the day of lay until the day of processing.  相似文献   

10.
Refrigeration to limit bacterial multiplication is a critical aspect of efforts to control the transmission of Salmonella enterica serovar Enteritidis (SE) to consumers of contaminated eggs. Although the nutrient-rich yolk interior is an uncommon location for SE contamination in freshly laid, naturally contaminated eggs, migration across the vitelline membrane could lead to rapid bacterial multiplication even when the initial site of deposition is outside the yolk. Multiplication on the yolk membrane (before, or in addition to, multiplication within the yolk contents) could be another source of increased risk to consumers. The present study used an in vitro egg contamination model to compare the abilities of four strains of SE to either multiply in association with the yolk membrane or migrate through that membrane to reach the yolk contents during 36 h of incubation at 30 degrees C. After inoculation onto the exterior surface of intact, whole yolks, all four SE strains penetrated the vitelline membrane to reach the yolk contents (at an overall frequency of 11.5%) after 12 h of incubation. The mean log concentration of SE was significantly higher in whole yolks (including yolk membranes) than in yolk contents at both 12 h (0.818 versus 0.167 CFU/ ml) and 36 h (2.767 versus 1.402 CFU/ml) of incubation. These results demonstrate that SE multiplication on the vitelline membrane may both precede and exceed multiplication resulting from penetration into the yolk contents during the first 36 h of unrefrigerated storage, reinforcing the importance of rapid refrigeration for protecting consumers from egg-transmitted illness.  相似文献   

11.
The inside of a hen's egg, once considered sterile, is now known to occasionally harbor Salmonella Enteritidis. At least two recent outbreaks of salmonellosis in which Salmonella Enteritidis PT34 was involved have been associated with hard-cooked eggs. This study was undertaken to compare D56 degrees C values of Salmonella Senftenberg 775W and six strains of Salmonella Enteritidis isolated from outbreaks associated with eggs. D56 degrees C values for Salmonella Enteritidis in liquid egg yolk ranged from 5.14 to 7.39 min; the D56 degrees C value for Salmonella Senftenberg was 19.96 min. The two PT34 strains from outbreaks associated with hard-cooked eggs did not exhibit significantly higher resistance to heat compared with two PT4 strains and one strain each of PT8 and PT13a. A PT4 strain and a PT34 strain of Salmonella Enteritidis were separately inoculated (10(7) to 10(8) CFU) into the yolk of medium and extra large shell eggs at 10 and 21 degrees C, and survival was monitored using two cooking methods: (i) placing eggs in water at 23 degrees C, heating to 100 degrees C, removing from heat, and holding for 15 min (American Egg Board method) and (ii) placing eggs in water at 100 degrees C, then holding for 15 min at this temperature. Within the 15-min holding periods, inactivation was more rapid using the method recommended by the American Egg Board compared with method 2. Within each cooking method, inactivation was most rapid in medium eggs initially at 21 degrees C. The PT4 strain survived in yolk of extra large eggs initially at 10 degrees C when eggs were held in boiling water 9 min using method 2. The final temperature of the yolk in these eggs was 62.3 +/- 2 degrees C. Of the two methods evaluated for hard cooking eggs, the American Egg Board method is clearly most effective in killing Salmonella Enteritidis in the yolk.  相似文献   

12.
Mixed raw egg contents were inoculated with approximately 10 CFU of Salmonella Enteritidis and supplemented with 0 to 7 mg of FeSO4 per g of egg contents. Egg contents were then incubated at 37 degrees C, and Salmonella Enteritidis colonies were enumerated for up to 106 h. Iron supplementation significantly enhanced the growth of Salmonella Enteritidis. Within the first 24 h of incubation, the optimum iron level for Salmonella Enteritidis growth in egg contents was between 0.2 and 2 mg of FeSO4 per g of egg contents. After 24 h of incubation at 37 degrees C. Salmonella Enteritidis counts in eggs supplemented with 0.5 mg of FeSO4 per g of egg contents consistently reached approximately 1 x 10(9) CFU/ml, whereas Salmonella Enteritidis counts in eggs without iron supplementation varied from less than 5 CFU/ml to 8.4 x 10(6) CFU/ml. A 3 by 3 factorial design was used to study the effect of type of preenrichment and level of iron supplementation on the growth of Salmonella Enteritidis in egg contents. No significant differences in Salmonella Enteritidis counts between preenrichment and nonpreenrichment treatments were observed when egg contents were supplemented with 0.5 mg of FeSO4 per g of egg contents. It was concluded that preenrichment was not necessary for isolation of Salmonella Enteritidis from eggs. The effect of iron supplementation on the sensitivity of detection by the direct plating method was investigated. The direct plating method detected a significantly higher percentage of Salmonella Enteritidis in raw egg contents supplemented with 0.5 mg of FeSO4 per g of egg contents (90%) than in raw egg contents without iron supplementation (63.3%).  相似文献   

13.
The goal of this study was to determine the effects of various levels of gamma irradiation on the phenotypic characteristics of 20 strains of Salmonella Enteritidis inoculated separately into specific-pathogen-free shell eggs. Bacterial strains were inoculated into egg yolks and exposed to (60)Co radiation at doses of 0.49 to 5.0 kGy. The eggs were maintained at 25°C and analyzed for the presence of Salmonella on days 1, 2, 4, and 7, and the recovered Salmonella isolates were characterized biochemically. All strains were resistant to doses of 0.49, 0.54, 0.59, 0.8, and 1 kGy; colony counts were ≥10(5) CFU/ml of egg yolk except for one strain, which was detected at 96 h and at 7 days after irradiation at 1 kGy, with a population reduction of 2 log CFU/ml. For the other evaluated doses, 12 strains (60.0%) were resistant at 1.5 kGy and 7 strains (35.0%) were resistant at 3.0 kGy. Among all analyzed strains, 5.0 kGy was more effective for reducing and/or eliminating the inoculated bacteria; only two (10%) strains were resistant to this level of irradiation. Salmonella colony counts were significantly reduced (P < 0.01) with increasing doses from the day 1 to 7 of observation, when microbial growth peaked. Loss of mobility, lactose fermentation, citrate utilization, and hydrogen sulfide production occurred in some strains after irradiation independent of dose and postirradiation storage time. Increases in antibiotic susceptibility also occurred: seven strains became sensitive to β-lactams, two strains became sensitive to antifolates, and one strain each became sensitive to fluoroquinolone, phenicol, nitrofurans, tetracyclines, and aminoglycosides. The results indicate that up to 5.0 kGy of radiation applied to shell eggs inoculated with Salmonella Enteritidis at 4 log CFU per egg is not sufficient for complete elimination of this pathogen from this food matrix.  相似文献   

14.
Utilization of ferrioxamine E (FE) as a sole source of iron distinguishes Salmonella from a number of related species, including Escherichia coli. FE is not able to serve as a source of iron for E. coli or the Proteus-Providencia-Morganella group. This confers a selective advantage on Salmonella Enteritidis in egg white supplemented with FE. The optimum concentration of FE that promoted a selective advantage for Salmonella in egg white was determined. Four supplementation concentrations were evaluated (25, 50, 200, and 500 microg/ml) in egg white artificially inoculated with proportionally mixed cultures of a rifampin-resistant strain of Salmonella Enteritidis (0.1 ml of 102 CFU/ml) and E. coli K-12 (0.1 ml of 10(1) through 10(8) CFU/ml). After a 24-h incubation at 37 degrees C, Salmonella and E. coli populations were enumerated. At higher concentrations of FE (>50 microg/ml), both Salmonella and E. coli were able to use the iron supplement (1 to 8.5 log CFU/ml and 1.8 to 8 log CFU/ml, respectively); however, lower FE concentrations (< or = 50 microg/ml) exclusively promoted Salmonella growth. Salmonella was unrecoverable without supplementation. This study indicates that optimum levels of FE supplementation in egg can improve the selective detection for Salmonella Enteritidis among other competitive organisms.  相似文献   

15.
D values for a five-strain cocktail of Salmonella Enteritidis in five different liquid egg products (whole egg, egg yolk, egg white, egg yolk + 5% sucrose + 5% NaCl, and egg yolk + 10% NaCl) were determined using 100-microl capillary tubes. The egg products were inoculated with approximately 1 X 10(10) organisms/ml and heated in capillary tubes to temperatures ranging from 51 to 68 degrees C for various time intervals. Using a pilot scale plate heat exchanger, the U.S. Department of Agriculture (USDA) protocols for pasteurization were also evaluated using egg products inoculated with approximately 1 x 10(7) Salmonella Enteritidis/ml. Results of experiments with capillary tubes suggested that almost all processes would result in less than the 9D process recommended by the USDA. However, when the egg products were pasteurized using the plate heat exchanger, a greater than 9D process was achieved for Salmonella Enteritidis in all products except egg yolk containing 5% sucrose + 5% NaCl, which received approximately a 4D process.  相似文献   

16.
We studied the effects of laying seasons and egg shell cracks on the ability of egg albumen to support the growth of Salmonella Enteritidis (SE) in eggs. Hens eggs used were those laid in February, June, and October in a farm in Japan and stored at 10, 20, and 30 degrees C, and at 30 degrees C after storage at 10 degrees C, immediately after receipt or after cracking the shell. At several-day intervals during storage, the egg contents were poured into a dish, SE was inoculated into albumen, and then the growth of SE during 3 days incubation at 18 degrees C was measured. The results demonstrated that storage temperature and laying season affected the growth of SE in the egg albumen. The proportion of eggs upon which albumen allowed the growth of SE was higher in the eggs stored at 30 degrees C than those stored at 10 degrees C. The growth of SE in eggs was lowest in the following order of laying: February, October, and June. SE grew preferably in albumen of cracked eggs than intact eggs.  相似文献   

17.
Indirect enzyme-linked immunosorbent assays (ELISAs) have been applied to detect immunoglobulin Y antibodies to different serotypes of Salmonella in the yolks of chicken eggs with heat-extracted antigens of Salmonella enterica serotypes Agona (SA), Cerro (SC), Enteritidis (SE), Montevideo (SM), and Putten (SP). The egg yolk samples examined were classified as positive if their ELISA absorbance values exceeded the value for eggs from specific-pathogen-free flocks by more than two standard deviations. Of 30 egg yolk samples from three flocks vaccinated with a killed SE vaccine, 29 were antibody positive by the ELISA assay for the SE antigen. Four to 29 of the 29 yolk samples showed positive results for the other serovars, although the absorbance values for SE were higher than those obtained for the other serotypes in each of the yolk samples. All 30 yolks from three flocks that were not administered any SE vaccines were found to be antibody negative for SE, and two samples were determined to be positive for SC. Thirty-nine or 40 eggs were obtained from each of four layer flocks in a commercial egg production farm where the laying houses were naturally contaminated with SA, SC, SM, SP, Salmonella serovar Infantis (SI), and untypeable strains. The ELISA absorbance values for SM in the egg yolks obtained from the two flocks molted through feed withdrawal when the birds restarted laying were significantly (P < 0.05) higher than those observed in the yolks obtained before the molt. In egg yolks from the two other flocks that were molted through a wheat bran diet, there was no significant difference between the absorbance values before and after the molt. The observations in the present study provide further evidence to suggest that a molt initiated through the administration of a wheat bran diet can reduce the risk for Salmonella problems in a commercial egg-producing setting.  相似文献   

18.
An assay was developed for the specific detection of Salmonella Enteritidis in eggs with the use of an application of the fluorogenic 5' nuclease assay (TaqMan). In this assay, a segment of the gene sefA specific to Salmonella group D strains such as Salmonella Enteritidis was used. The amplification of the target gene products was monitored in real-time by incorporating a fluorescent dye-labeled gene-specific probe in the PCR reaction. This method correctly detected and distinguished Salmonella Enteritidis from nearly 50 of non-group D Salmonella and other non-Salmonella strains. Detection of the sefA gene was linear for DNA extracted from approximately 10(2) to 10(9) CFU/ml in phosphate-buffered saline and 10(3) to 10(8) CFU/ml in raw egg. In two trials, when applied to detection of Salmonella Enteritidis in homogenized egg pools and compared with conventional culture methods, the newly developed PCR method yielded a 100% correlation with results obtained by a conventional culture method. However, the PCR method required only 2 days, compared to the 5 days required by the culture method. The sensitivity of this assay was approximately less than 1 CFU/600 g of egg pool. The real-time PCR assay proved to be a rapid, highly sensitive test for detection and quantification of low concentrations of Salmonella Enteritidis in egg samples.  相似文献   

19.
Internally contaminated eggs have been implicated as leading sources of transmission of Salmonella Enteritidis (SE) to humans. Although SE is not often deposited inside the nutrient-rich yolks of naturally contaminated eggs, penetration through the vitelline membrane to reach the yolk contents could result in rapid bacterial multiplication. In previous studies, such penetration has been observed occasionally at warm temperatures during experiments with in vitro egg contamination models. The present study was conducted to determine whether refrigeration affects the frequency of in vitro SE penetration of the egg yolk membrane. After inoculation of small numbers of SE onto the outside of the vitelline membranes of intact yolks, immediate refrigeration of contaminated samples prevented the penetration of SE into the egg yolk contents during 24 h of storage. However, SE penetrated inside the yolk contents in 4% of contaminated egg samples refrigerated after 2 h of storage at 30 degrees C, 15% of samples refrigerated after 6 h of storage at 30 degrees C, and 40% of samples stored at 30 degrees C for 24 h (48 samples per treatment group). These results highlight the value of prompt refrigeration for restricting the opportunities for SE to multiply to high numbers inside the yolks of contaminated eggs.  相似文献   

20.
Detecting internal contamination of eggs with Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) is an important aspect of efforts to identify infected laying flocks. When egg contents pools are tested for Salmonella Enteritidis, a preliminary incubation step is often employed to allow small initial populations of contaminants to multiply to more easily detectable numbers. Consistent detection of Salmonella Enteritidis in egg pools by direct plating requires the presence of at least 10(5) CFU/ml, whereas some very rapid methods can require as many as 10(7) CFU/ml. The present study determined the rates at which initial inocula of approximately 10 Salmonella Enteritidis cells multiplied in 10-egg pools, some of which were supplemented with concentrated nonselective enrichment broth or with a source of iron. At 37 degrees C, Salmonella Enteritidis concentrations in supplemented egg pools usually reached 10(5) CFU/ml within 12 h and 10(7) CFU/ml by 12 to 15 h of incubation. At 25 degrees C, Salmonella Enteritidis concentrations in supplemented egg pools typically attained 10(5) CFU/ml by 18 to 27 h and 10(7) CFU/ml by 27 to 36 h of incubation. At both temperatures, Salmonella Enteritidis multiplication was significantly slower in unsupplemented pools. Accordingly, the length of incubation time necessary for consistent detection of small numbers of Salmonella Enteritidis in egg contents pools depends on the incubation temperature used, on whether the egg pools are supplemented to increase the rate of bacterial multiplication, and on the sensitivity of subsequent tests applied to the incubated pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号