共查询到20条相似文献,搜索用时 62 毫秒
1.
随着四核微机走向市场和八十核处理器在实验室研制成功,多核正引领软件研发发生基础性变化。开发人员需要在代码中添加线程来利用系统所提供的多个内核,从而提升PC应用软件的功能和性能。文中探讨在多核微机上进行并行计算的实现技术。介绍了共享存储系统并行编程接口OpenMP的模型、指令和库函数,以及Intel C 编译器9.1和Microsoft Visual Studio 2005等对OpenMP的支持;着重探讨了二维离散快速傅里叶变换并行算法的设计、实现与优化技术;展望了高性能并行计算软构件库的开发前景。 相似文献
2.
研究了一种基于OpenMP技术的多核架构下并行蚁群算法,通过在TSP问题中的实验表明,该算法易于操作,而且充分利用了多核处理器并行计算的优势,提高了算法的运行效率。 相似文献
3.
4.
粒子群优化算法是进化计算领域中的一个新的分支。该算法简单且功能强大,但是粒子群优化也容易发生过早收敛的问题。该文提出一种两群替代微粒群优化算法,该方法将微粒分成不同的两分群进行搜索寻优。搜索一定次数后,每一次迭代首先判断微粒群的多样性是否低于一个阈值,若低于则按照黄金分割率用一分群中若干优势微粒取代另一分群中的劣势微粒。对3种常用函数的优化问题进行测试和比较,结果表明,该两群替代微粒群优化算法比基本微粒群优化算法更容易找到全局最优解,优化效率和优化性能明显提高。 相似文献
5.
在对标准微粒群算法分析的基础上,将它与BSP并行计算模型相结合,设计并实现了一种基于BSP并行计算模型的并行微粒群算法.这种基于BSP并行计算模型的并行微粒群算法改变了标准微粒群算法的结构,提高了算法求解效率.实验结果表明,该并行算法的性能比标准微粒群算法有了很大的提高. 相似文献
6.
在对基本PSO算法进行分析的基础上,针对PSO算法中的早熟收敛问题,提出了一种基于聚类分析的PSO算法(CPSO)。CPSO算法保证了微粒种群的多样性,使微粒能够有效地进行全局搜索。并证明了它依概率收敛于全局最优解。最后以典型的基准优化问题进行了仿真实验,验证了CPSO的有效性。 相似文献
7.
多核微机基于OpenMP的并行计算 总被引:5,自引:2,他引:5
随着四核微机走向市场和八十核处理器在实验室研制成功,多核正引领软件研发发生基础性变化。开发人员需要在代码中添加线程来利用系统所提供的多个内核,从而提升PC应用软件的功能和性能。文中探讨在多核微机上进行并行计算的实现技术。介绍了共享存储系统并行编程接口OpenMP的模型、指令和库函数,以及Intel C++编译器9.1和Microsoft Visual Studio 2005等对OpenMP的支持;着重探讨了二维离散快速傅里叶变换并行算法的设计、实现与优化技术;展望了高性能并行计算软构件库的开发前景。 相似文献
8.
带组织的粒子群优化同步并行算法 总被引:1,自引:0,他引:1
提出带组织的粒子群优化同步并行算法.粒子群优化算法是一种基于群体智能的演化算法,具有良好的优化性能.但由于群体的迅速收敛和多样性低,导致算法早熟收敛.带组织的粒子群优化同步并行算法虽然克服了早熟收敛问题,但无形中却增加了计算时间.结合已有的并行计算技术,构造出了该方法的同步并行计算算法,仿真试验证明并行算法具有更快的收敛速度. 相似文献
9.
10.
在对一种保证全局收敛的微粒群算法——随机PSO算法(SPSO)进行分析的基础上,提出了一种基于聚类分析的随机微粒群算法(CSPSO)。CSPSO算法保证了种群的多样性,使微粒能够有效地进行全局搜索。并证明了它依概率收敛于全局最优解。最后以典型的复杂基准优化问题进行了仿真实验,验证了CSPSO的有效性。 相似文献
11.
成新文 《计算机工程与应用》2010,46(21):34-36
提出了自适应免疫量子粒子群优化并行算法。为了克服粒子群优化算法早熟收敛以及粒子在进化过程中缺乏很好的方向指导的问题,采用了量子技术以及免疫机制,从而获得了一个自适应免疫量子粒子群优化算法。同时,针对该算法计算量大、耗时长的缺点,结合已有的并行计算技术,构造出了该算法的并行计算方法。仿真实验表明所提并行算法具有较好的性能。 相似文献
12.
为了改进基本粒子群算法的搜索功能,针对粒子群算法易于陷入局部极值,进化后期的收敛速度慢和精度低等缺点,通过公式分析得到新的惯性权重调节方法,提出了一种新的改进粒子群算法。用几个经典测试函数进行实验,实验结果表明,新算法不仅具有更好的收敛精度,而且能更有效地进行全局搜索。 相似文献
13.
针对基本粒子群优化算法(PSO)易陷入局部极值点,进化后期收敛慢,精度较差等缺点,提出了一种改进的粒子群优化算法.该算法用一种无约束条件的随机变异操作代替速度公式中的惯性部分,并且使邻居最优粒子有条件地对粒子行为产生影响,提高了粒子间的多样性差异,从而改善了算法能力.通过与其它算法的对比实验表明,该算法能够有效地进行全局和局部搜索,在收敛速度和收敛精度上都有显著提高. 相似文献
14.
袁代林 《计算机工程与应用》2015,51(5):23-26
分析了粒子群算法的惯性部分、个体认知部分和群体认知部分的作用,对粒子群算法迭代方程的各部分进行变形,获得了三种新形式的粒子群算法。用算例说明所得到的三个新的粒子群算法具有较好的优化能力。 相似文献
15.
16.
复形法粒子群优化算法研究 总被引:1,自引:1,他引:0
针对基本粒子群优化算法对复杂函数优化时难以获得最优解的缺陷,提出了一种复形粒子群优化算法。该算法采用复形法来提高粒子的局部搜索能力,从而保证了算法能够跳出局部最优,获得全局最优解。实验结果表明,与文献算法相比,该算法在基准函数优化时具有更强的寻优能力和更高的搜索精度。 相似文献
17.
18.
19.
粒子群和人工鱼群混合优化算法 总被引:2,自引:1,他引:2
提出基于粒子群的人工鱼群混合优化算法,该算法综合利用人工鱼群算法的良好全局收敛性和粒子群算法的局部快速收敛性、易实现性等优点,克服人工鱼群算法收敛速度慢及粒子群算法后期全局收敛差的缺点,发挥了两者的优越性,并成功应用于求解具有变量边界约束的非线性的复杂函数最优化问题和求解复杂化学方程根的问题。仿真结果表明,混合粒子群算法不仅具有较好的全局收敛性能,而且具有较快的收敛速度。 相似文献
20.
粒子群优化算法(PSO)是一种生物进化技术。依据粒子间的相互影响发现搜索空间中的最优解。通过分析基本PSO算法的进化方程,研究了一种具有更好收敛速度和全局收敛性的改进PSO算法。5个典型测试函数的仿真实验表明该改进算法是行之有效的。 相似文献