首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
锂离子电池材料LiMn2O4的制备与改性研究   总被引:2,自引:1,他引:1  
尖晶石LiMn2O4被认为是最有发展前景的锂离子电池正极材料,但其高温容量衰减和循环性能差却是制约其商品化的主要原因。介绍了LiMn2O4的结构和电化学性能,综述了锂离子电池正极材料LiMn2O4的制备方法与改性研究。许多研究表明,在优化合成条件的基础上,通过掺杂和表面修饰可以改善其高温性能。  相似文献   

2.
吕正中  周震涛 《电源技术》2004,28(5):270-272
为了考察LiMn2O4锂离子蓄电池正极材料在充放电过程中的化学变化,采用高温固相法制备了尖晶石型LiMn2O4,并对其电化学性能进行了表征,利用X射线衍射分析的结果,结合Li-Mn-O相图,对LiMn2O4在多次循环充放电所发生的相变进行了研究。实验结果表明,其首次放电比容量为123 mAh/g,循环200次后的放电比容量为107 mAh/g;LiMn2O4发生歧化反应,以及在LiMn2O4微粒表面形成的Li2Mn2O4进一步转化成无电化学活性的Li2MnO3,这两种相变都会导致电池的不可逆容量损失。  相似文献   

3.
用固相法高温合成得到尖晶石Li1 +xCryMn2 -yO4作锂离子二次电池正极活性材料 ,研究了不同合成条件对Li1 +xCryMn2 -yO4结构的影响 ,电化学性能测试表明LiMn2 O4掺Cr后初次放电容量有所下降 ,但循环性能有较大提高。  相似文献   

4.
尖晶石LiMn2O4高温电化学性能研究   总被引:1,自引:0,他引:1  
利用高温固相反应合成了锂离子蓄电池正极材料尖晶石LiMn2 O4 ,研究了在高温 5 5℃下LiMn2 O4 循环容量的衰减和贮存后电化学性能的变化。与常温下相比较 ,5 5℃下尖晶石的容量衰减显著加快 ,贮存后的LiMn2 O4 循环性能变差。改变合成工艺条件如合成温度、n(Li)∶n(Mn)比 ,LiMn2 O4 的高温电化学性能有所改善 ,掺杂金属Co元素合成尖晶石掺Co化合物也能够提高LiMn2 O4 在高温下的循环性能 ,通过测量LiMn2 O4 在高温下电解液中的溶解 ,分析了容量衰减的机理。  相似文献   

5.
介绍了水基锂离子电池的优点和原理,探讨了水基锂离子电池中的正极材料:LiMn2 O4、LiCoO2和LiFe0.5 Mn0.5 PO4/C,负极材料:钒的氧化物、活性碳(AC)、聚苯胺(PANI)及复合膜包覆型金属锂.归纳了电极材料的合成方法和电化学性能.综述了使用不同电解液电池的电化学性能,提出水基锂离子电池目前的发展方向是提高比容量和循环稳定性.  相似文献   

6.
亚微米级正极材料LiMn2O4的合成   总被引:3,自引:0,他引:3  
杨书廷  贾俊华  陈红军 《电池》2002,32(5):261-263
采用合适的初始原料 ,利用微波加热技术合成锂离子电池正极材料尖晶石LiMn2 O4。XRD及SEM测试结果表明 ,微波法不仅具有合成速度快 ,有效节约能源 ,而且颗粒度达到亚微米级并分散均匀。无需对材料进行任何机械研磨 ,有效克服了传统合成工艺颗粒度大、电化学活性点较少的缺点。电化学性能测试表明 ,微波法合成的样品同时具有电化学容量高 ,放电平台高 (约 3 9V)等优点 ,具有较好的推广应用前景  相似文献   

7.
LiCoO2改性LiMn2O4的结构及性能   总被引:3,自引:1,他引:2  
采用固相反应法制备了尘晶石型LiMn2O4及改性LiMn2O4.利用XRD和SEM对合成产物的结构进行表征,并测试了它们的电化学性能.结果表明:用LiCoO2改性后的复合产物保持了尖晶石主体结构,随着liCoO2量的增加,Mn-O键增强,晶胞参数减小,产物的结构性能较好.以合成的改性产物为正极材料,MCMB为负极材料,组装的063048型锂离子电池循环300次后,容量保持率在80%以上.  相似文献   

8.
用尖晶石型LiMn2O4材料做正极活性物质,石墨做负极材料,制备额定容量为1000mAh的456080软包方形锂离子电池。重点研究了不同的电解液注液系数对电池循环性能的影响。实验结果表明,4.5g/Ah的注液系数下,尖晶石型LiMn2O4表现出了更好的循环性能。  相似文献   

9.
主要研究了具有微米级单晶改性正极材料LiMn1.82Al0.18O4的基本物理和电化学性能,并考察了该材料在18650型高功率锂离子电池中的应用。通过扫描电子显微镜法(SEM)照片可看出该材料由平均粒径为6~8μm的具有八面体单晶颗粒组成,比表面积小于0.4m2/g,振实密度可达2.4g/cm3。电化学性能测试表明,样品LiMn1.82Al0.18O4在3.0~4.35V(vs.Li/Li+)充放电电压范围内,可逆比容量可达100mAh/g。以该材料为正极材料的18650型高功率锂离子电池容量可达1000mAh,30C倍率放电容量保持率达到0.2C倍率下的92%以上,具有优异的倍率性能。  相似文献   

10.
在电解液中的溶解是尖晶石LiMn2O4高温不可逆容量损失的主要原因。聚合物锂离子蓄电池结构特点及聚合物材料与电解液相互作用可以影响高温下尖晶石LiMn2O4在电解液中的溶解及扩散行为,降低尖晶石LiMn2O4的不可逆容量损失。使用尖晶石LiMn2O4为正极活性材料,利用厦门大学宝龙电池研究所聚合物锂离子蓄电池中试生产线,在特定的工艺条件下制备容量为600mAh的实验电池。实验表明,在聚合物锂离子蓄电池中LiMn2O4材料高温稳定性明显改善,实验电池在常温下循环200次,容量保持率在80%以上;55℃下循环30次,容量保持率超过92%;70℃下循环10次,容量保持率达到96%。  相似文献   

11.
主要以聚乙烯为隔膜,锰酸锂(Li Mn2O4)、钛酸锂(Li4Ti5O12)为电池正负极的活性物质制备得到12 Ah软包装锂离子电池。通过选择合适的电解液配方及电极材料,并对制作工艺优化后制备可得实验电池。在1.6~2.8 V下对电池进行充放电实验发现,常温下以4.00 C循环5 000次时,电池的容量保持率仍大于96%;以0.50 C放电时,高温下其容量约为常温下的108.0%;最高脉冲放电比率为2 238 W/kg。  相似文献   

12.
锂离子蓄电池正极材料LiMn2O4掺钒的研究   总被引:4,自引:0,他引:4  
陈昌国  余丹梅  张苏红  朱伟  黄宗卿 《电源技术》2001,25(4):262-263,274
采用低温液相碳酸盐法合成了掺杂钒的Li-Mn-O正极材料.X射线衍射分析表明当掺钒量小于20%,合成的电极材料Li-V-Mn-O仍能保持LiMn2O4的尖晶石结构,当掺钒量超过20%则合成产物中不含尖晶石结构的LiMn2O4.循环伏安和恒电流充放电实验证实掺杂钒可改善Li-Mn-O正极材料电化学反应的可逆性,并提高其比容量;掺钒量大于10%时,合成产物中出现杂质相导致电极材料电化学性能下降.  相似文献   

13.
AA 型 TAG-LiMn_2O_4 锂离子蓄电池   总被引:1,自引:1,他引:0  
用Li2CO3和EMD高温合成得到的尖晶石(LiMn2O4)作阴极活性材料,与Li配对做成试验电池,充电容量达130mAh/g,放电容量为110mAh/g,显示LiMn2O4有较好的充放电性能。对热解苯碳(PyC)、处理的人造石墨(TAG)、天然石墨(NG)和玻璃碳(GC)进行研究,发现TAG有较好的充放电性能。用LiMn2O4做阴极活性材料,TAG做阳极活性材料,组装成AA型锂离子蓄电池,初始放电容量为540mAh,以0.2C(100mA)恒流放电,60mA恒流充电,电池循环寿命已达200次。  相似文献   

14.
正尖晶石LiMn2O4的合成与电化学性能研究   总被引:3,自引:0,他引:3  
采用高温固相反应原理合成了LiMn2O4锂离子电池正极材料,研究了合成原料中n(Li)/n(Mn)(摩尔比)和合成温度以及掺杂金属钴元素对合成产物性能和结构的影响,恒电流充放电结果麦明LiMn2O4容量为115~120mAh/g,掺杂钴以后容量下降而循环性能改善,XRD测试分析表明合成产物具有正尖晶石结构;通过进一步优化材料的粒度和电极制备时控制导电剂的加入量,确定了提高LiMn2O4的容量、改善材料循环性能的其他因素.以合成产物为阴极材料,MCMB为阳极材料,组装的18650型锂离子电池的容量达到了1250mAh,循环300次后容量保持70%左右.  相似文献   

15.
锰酸锂正极材料在充放电循环过程中容量衰减严重,严重影响其大规模应用。针对其容量衰减严重的问题,通过固相制备出Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4正极材料,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)、充放电测试、CV和EIS对其结构、形貌及电化学性能进行了研究。结果表明,Mg2+、Na+的掺杂未改变Li Mn2O4的结构。在0.2 C下,样品Li Mn2O4和Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的首次放电比容量分别为127.1 m Ah/g和123.3 m Ah/g,充放电循环100次后,其容量保持率分别为77.34%和94.81%,Mg2+、Na+掺杂后,材料的初始放电比容量略有降低,但循环性能明显得到了改善。在10 C下,Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的放电比容量高达92.4 m Ah/g。实验表明,Mg2+、Na+的共同掺杂有效改善了Li Mn2O4的循环稳定性和倍率性能。  相似文献   

16.
温度对LiMn2O4正极材料嵌锂动力学的影响   总被引:1,自引:0,他引:1  
采用传统方法成功制备了LiMn2O4正极材料,并利用微分电容和电化学阻抗谱研究了储存温度对LiMn2O4正极材料锂离子嵌脱动力学的影响。微分电容曲线表明LiMn2O4中锂离子的两步嵌脱机制是完全不同的。电化学阻抗谱表明,随着储存温度的升高,Li+在电极活性物质中的扩散变得困难,从而导致电荷转移电阻迅速增大。  相似文献   

17.
作为一种新型材料,锂离子蓄电池尖晶石LiMn2O4正极材料已经得到了广泛的应用,但容量衰减成为LiMn2O4商品化的主要障碍。从正极材料的溶解及相变化、电解液的分解、钝化膜的形成、过充电、集流体的腐蚀等方面介绍了影响LiMn2O4正极材料容量衰减的机理。提出了减少LiMn2O4正极材料容量衰减的几种方法,并对LiMn2O4正极材料的发展前景做出了展望。  相似文献   

18.
尖晶石LiMn2O4的合成及微量Fe的掺杂改性   总被引:2,自引:0,他引:2  
以不同材料作为锰源,采用溶胶-凝胶法(sol-gel)合成了尖晶石LiMn2O4。电化学测试结果表明,采用硝酸锰作为锰源合成的尖晶石LiMn2O4具有相对较佳的电化学性能。进而采用碳酸锂、硝酸锰作为锂源和锰源合成了化学式为LiFexMn2-xO4的尖晶石锂锰氧化物材料(x=0.05、0.1、0.2、0.3、0.4),发现当x=0.1时,掺铁尖晶石LiMn2O4的初始放电容量达119 mAh/g,循环95次后容量保持率为86%,这一结果接近商品化尖晶石LiMn2O4。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号