首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluctuation of RF performance (particularly for $f_{T}$ : cutoff frequency) in the transistors fabricated by 90-nm CMOS technology has been investigated. The modeling for $f_{T}$ fluctuation is well fitted with the measurement data within approximately 1% error. Low-$V_{t}$ transistors (fabricated by lower doping concentration in the channel) show higher $f_{T}$ fluctuation than normal transistors. Such a higher $f_{T}$ fluctuation results from $C_{rm gg}$ (total gate capacitance) variation rather than $g_{m}$ variation. More detailed analysis shows that $C_{rm gs} + C_{rm gb}$ (charges in the channel and the bulk) are predominant factors over $C_{rm gd}$ (charges in LDD/halo region) to determine $C_{rm gg}$ fluctuation.   相似文献   

2.
The nonmonotonic behavior of power/ground noise with respect to the transition time $t_{r}$ is investigated for an inductive power distribution network with a decoupling capacitor. The worst case power/ground noise obtained with fast switching characteristics is shown to be significantly inaccurate. An equivalent transition time that corresponds to resonance is presented to accurately estimate the worst case power/ground noise in the time domain. Furthermore, the sensitivity of the ground noise to the decoupling capacitance $C_{d}$ and parasitic inductance $L_{g}$ is evaluated as a function of the transition time. Increasing the decoupling capacitance is shown to efficiently reduce the noise for transition times smaller than twice the $LC$ time constant, $t_{r}leq 2sqrt {L_{g}C_{d}}$. Alternatively, reducing the parasitic inductance $L_{g}$ is shown to be effective for transition times greater than twice the $LC$ time constant, $t_{r}geq 2sqrt {L_{g}C_{d}}$. The peak noise occurs when the transition time is approximately equal to twice the $LC$ time constant, $t_{r}approx 2sqrt {L_{g}C_{d}}$ , referred to as the equivalent transition time for resonance.   相似文献   

3.
The effect of temperature on the small-signal radio-frequency (RF) performance of submicron AlGaN/GaN high-electron-mobility transistors on SiC has been studied from room temperature (RT) up to 600 K. A relation between ambient and channel temperatures has been established by means of finite-element simulations. The thermal behavior of the intrinsic parameters $C_{rm gs}$, $C_{rm gd}$, $g_{m, {rm int}}$, and $g_{rm ds}$ has been extracted accurately from RF measurements by means of the small-signal equivalent circuit. Main dc parameters $(I_{D}, g_{m, {rm ext}})$ show reductions close to 50% between RT and 600 K, mainly due to the decrease in the electron mobility and drift velocity. In the same range, $f_{T}$ and $f_{max}$ suffer a 60% decrease due to the reduction in $g_{m, {rm ext}}$ and a slight increase of $C_{rm gs}$ and $C_{rm gd}$. An anomalous thermal evolution of $C_{rm gd}$ at low $I_{D}$ has been identified, which is indicative of the presence of traps.   相似文献   

4.
For the first time, internal spacers have been introduced in multichannel CMOSFET (MCFET) structures, featuring a decrease of the intrinsic $CV/I$ delay by 39%. The process steps introduced for this new MCFET technological option are studied and optimized in order to achieve excellent $I_{rm ON}/I_{rm OFF}$ characteristics (NMOS: 2.33 $hbox{mA}/muhbox{m}$ at 27 $hbox{pA}/muhbox{m}$ and PMOS: 1.52 $hbox{mA}/muhbox{m}$ at 38 $hbox{pA}/muhbox{m}$). A gate capacitance $C_{rm gg}$ reduction of 32% is measured, thanks to $S$-parameter extraction. Moreover, a significant improvement of the analogical figure of merit is measured compared with optimized fully depleted silicon-on-insulator planar reference; the voltage gain $A_{rm VI}(= g_{m}/g_{rm ds})$ is improved by 92%.   相似文献   

5.
For a variety of solar cells, it is shown that the single exponential $J{-}V$ model parameters, namely—ideality factor $eta$ , parasitic series resistance $R_{s}$, parasitic shunt resistance $R_{rm sh}$, dark current $J_{0}$, and photogenerated current $J_{rm ph}$ can be extracted simultaneously from just four simple measurements of the bias points corresponding to $V_{rm oc}$, $sim!hbox{0.6}V_{rm oc}$, $J_{rm sc}$, and $sim! hbox{0.6}J_{rm sc}$ on the illuminated $J{-}V$ curve, using closed-form expressions. The extraction method avoids the measurements of the peak power point and any $dJ/dV$ (i.e., slope). The method is based on the power law $J{-}V$ model proposed recently by us.   相似文献   

6.
We report the observation and utilization of boron segregation in trench MOSFETs (UMOS) to reduce on-resistance. A trenched LOCOS process has been applied to a UMOS structure to reduce the gate-to-source overlap capacitance $(C_{rm gs})$, and it is observed that not only 40% reduction in $C_{rm gs}$ is achieved but also 45% reduction in specific on-resistance $(R_{{rm on}, {rm sp}})$. Figure of merit is improved by 58%. TSUPREM-4 doping profile simulation at the silicon and oxide interface revealed the presence of boron segregation. On-resistance reduction is attributed by the shortened vertical channel length due to boron segregation.   相似文献   

7.
Multi-Channel Field-Effect Transistor (MCFET) structures with ultralow $I_{ rm OFF}$ (16 $hbox{pA}/muhbox{m}$) and high $I_{rm ON}$ (N: 2.27 $ hbox{mA}/muhbox{m}$ and P: 1.32 $hbox{mA}/muhbox{m}$ ) currents are obtained on silicon on insulator (SOI) with a high-$ kappa$/metal gate stack, satisfying both low-standby-power and high-performance requirements. The experimental current gain of the MCFET structure is compared with that of an optimized planar FD-SOI reference with the same high-$kappa$/metal gate stack and is quantitatively explained by an analytical model. Transport properties are investigated, and the specific MCFET electrostatic properties are evidenced, in particular a higher $V_{rm Dsat}$ for MCFETs compared with the planar reference. Finally, through 3-D numerical simulations correlated with specific characterizations, the influence of the channel width on the electrical performance is analyzed. For narrow devices, the parasitic bottom channel increases the total drain current of the MCFET structure without degrading the electrostatic integrity.   相似文献   

8.
The extraction of the effective mobility on $hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}$ metal–oxide–semiconductor field-effect transistors (MOSFETs) is studied and shown to be greater than 3600 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$. The removal of $C_{rm it}$ response in the split $C$$V$ measurement of these devices is crucial to the accurate analysis of these devices. Low-temperature split $C$$V$ can be used to freeze out the $D_{rm it}$ response to the ac signal but maintain its effect on the free carrier density through the substrate potential. Simulations that match this low-temperature data can then be “warmed up” to room temperature and an accurate measure of $Q_{rm inv}$ is achieved. These results confirm the fundamental performance advantages of $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ MOSFETs.   相似文献   

9.
The performance of conventional common-collector Colpitts oscillators is limited at higher frequencies due to the parasitic base–collector capacitance ${C}_{rm bc}$ and the base–emitter capacitance ${C}_{rm be}$. Due to the Miller effect, the parasitic capacitance ${ C}_{rm bc}$ significantly reduces the negative resistance. A large collector inductor further reduces the negative resistance.   相似文献   

10.
In this letter, we demonstrated dopant-segregated Schottky (DSS) p-MOSFET with gate-all-around silicon-nanowire (SiNW) channel of 10 nm in diameter. The DSS transistor shows improved performance as compared to a reference Schottky barrier (SB) transistor without dopant segregation. The DSS transistor shows $I_{rm ON}$ of 319 $mu hbox{A}/muhbox{m}$ at a low gate overdrive of $-$ 0.6 V, high $I_{rm ON}/I_{rm OFF}$ ratio $(sim!hbox{10}^{5})$, and short-channel performance with subthreshold slope $sim$90 mV/dec down to 100-nm gate length with relatively thick (6 nm) deposited gate oxide. The DSS transistor also shows significant reduction ( $sim!hbox{40}times$ lower) in the series resistance as compared to the SB transistor. The origin of the improved performance of the DSS is the thin dopant layer segregated at the nickel monosilicide/SiNW point contact which results in the enhanced hole injection at the source side and the suppressed electron injection at the drain side.   相似文献   

11.
In this letter, a polycrystalline-silicon thin-film transistor (poly-Si TFT) with a high- $k$ $hbox{PrTiO}_{3}$ gate dielectric is proposed for the first time. Compared to TFTs with a $hbox{Pr}_{2}hbox{O}_{3}$ gate dielectric, the electrical characteristics of poly-Si TFTs with a $hbox{PrTiO}_{3}$ gate dielectric can be significantly improved, such as lower threshold voltage, smaller subthreshold swing, higher $I_{rm on}/I_{rm off}$ current ratio, and larger field-effect mobility, even without any hydrogenation treatment. These improvements can be attributed to the high gate capacitance density and low grain-boundary trap state. All of these results suggest that the poly-Si TFT with a high- $k$ $hbox{PrTiO}_{3}$ gate dielectric is a good candidate for high-speed and low-power display driving circuit applications in flat-panel displays.   相似文献   

12.
We provide the first report of the structural and electrical properties of $hbox{TiN/ZrO}_{2}$/Ti/Al metal–insulator–metal capacitor structures, where the $hbox{ZrO}_{2}$ thin film (7–8 nm) is deposited by ALD using the new zirconium precursor ZrD-04, also known as Bis(methylcyclopentadienyl) methoxymethyl. Measured capacitance–voltage ($C$$V$) and current–voltage ( $I$$V$) characteristics are reported for premetallization rapid thermal annealing (RTP) in $hbox{N}_{2}$ for 60 s at 400 $^{circ}hbox{C}$, 500 $^{circ}hbox{C}$, or 600 $^{ circ}hbox{C}$. For the RTP at 400 $^{circ}hbox{C}$ , we find very low leakage current densities on the order of nanoamperes per square centimeter at a gate voltage of 1 V and low capacitance equivalent thickness values of $sim$ 0.9 nm at a gate voltage of 0 V. The dielectric constant of $ hbox{ZrO}_{2}$ is 31 $pm$ 2 after RTP treatment at 400 $^{circ}hbox{C}$.   相似文献   

13.
High-electron mobility transistors (HEMTs) based on ultrathin AlN/GaN heterostructures with a 3.5-nm AlN barrier and a 3-nm $hbox{Al}_{2}hbox{O}_{3}$ gate dielectric have been investigated. Owing to the optimized AlN/GaN interface, very high carrier mobility $(sim!!hbox{1400} hbox{cm}^{2}/hbox{V}cdothbox{s})$ and high 2-D electron-gas density $(sim!!kern1pthbox{2.7} times hbox{10}^{13} /hbox{cm}^{2})$ resulted in a record low sheet resistance $(sim !!hbox{165} Omega/hbox{sq})$. The resultant HEMTs showed a maximum dc output current density of $simkern1pt$2.3 A/mm and a peak extrinsic transconductance $g_{m,{rm ext}} sim hbox{480} hbox{mS/mm}$ (corresponding to $g_{m,{rm int}} sim hbox{1} hbox{S/mm}$). An $f_{T}/f_{max}$ of 52/60 GHz was measured on $hbox{0.25} times hbox{60} muhbox{m}^{2}$ gate HEMTs. With further improvements of the ohmic contacts, the gate dielectric, and the lowering of the buffer leakage, the presented results suggest that, by using AlN/GaN heterojunctions, it may be possible to push the performance of nitride HEMTs to current, power, and speed levels that are currently unachievable in AlGaN/GaN technology.   相似文献   

14.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

15.
Newly proposed mobility-booster technologies are demonstrated for metal/high- $k$ gate-stack n- and pMOSFETs. The process combination of top-cut SiN dual stress liners and damascene gates remarkably enhances local channel stress particularly for shorter gate lengths in comparison with a conventional gate-first process. Dummy gate removal in the damascene gate process induces high channel stress, because of the elimination of reaction force from the dummy gate. PFETs with top-cut compressive stress liners and embedded SiGe source/drains are performed by using atomic layer deposition TiN/$ hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$ on (100) substrates. On the other hand, nFETs with top-cut tensile stress liners are obtained by using $hbox{HfSi}_{x}/hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$. High-performance n- and pFETs are achieved with $I_{rm on} = hbox{1300}$ and 1000 $muhbox{A}/muhbox{m} hbox{at} I_{rm off} = hbox{100} hbox{nA}/mu hbox{m}$, $V_{rm dd} = hbox{1.0} hbox{V}$, and a gate length of 40 nm, respectively.   相似文献   

16.
We report on performance improvement of $n$-type oxide–semiconductor thin-film transistors (TFTs) based on $hbox{TiO}_{x}$ active channels grown at 250 $^{circ}hbox{C}$ by plasma-enhanced atomic layer deposition. TFTs with as-grown $hbox{TiO}_{x}$ films exhibited the saturation mobility $(mu_{rm sat})$ as high as 3.2 $hbox{cm}^{2}/hbox{V}cdothbox{s}$ but suffered from the low on–off ratio $(I_{rm ON}/I_{rm OFF})$ of $hbox{2.0} times hbox{10}^{2}$. $hbox{N}_{2}hbox{O}$ plasma treatment was then attempted to improve $I_{rm ON}/I_{rm OFF}$. Upon treatment, the $hbox{TiO}_{x}$ TFTs exhibited $I_{rm ON}/I_{rm OFF}$ of $hbox{4.7} times hbox{10}^{5}$ and $mu_{rm sat}$ of 1.64 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, showing a much improved performance balance and, thus, demonstrating their potentials for a wide variety of applications such as backplane technology in active-matrix displays and radio-frequency identification tags.   相似文献   

17.
Performance degradation of n-MOSFETs with plasma-induced recess structure was investigated. The depth of Si recess $(d_{R})$ was estimated from the experiments by using Ar gas plasmas. We propose an analytical model by assuming that the damage layer was formed during an offset spacer etch. A linear relationship between threshold voltage shift $(Delta V_{rm th})$ and $d_{R}$ was found. Device simulations were also performed for n-MOSFETs with various $(d_{R})$. Both $vertDelta V_{rm th}vert$ and off-state leakage current increased with an increase in $d_{R}$ . The increase in $vertDelta V_{rm th}vert$ becomes larger for smaller gate length. The results from device simulations are consistent with the analytical model. These findings imply that the Si recess structure induced by plasma damage enhances $V_{rm th}$-variability in future devices.   相似文献   

18.
To enhance the device sensitivity and detection limit, a gate bias is applied to the catalytic metal of AlGaN/GaN-heterojunction field-effect-transistor (HFET) hydrogen sensors to control the carrier concentration in the channel at operation. The sensors exhibit a good sensitivity at temperatures up to 800 $^{circ}hbox{C}$ and a detection limit of 10-ppb $ hbox{H}_{2}$ in $hbox{N}_{2}$. The dependence of the device sensitivity on gate and drain biases has been investigated. The sensitivity peaks at the gate bias of threshold voltage and the drain bias of knee voltage in sensing gas. At high temperatures and $hbox{H}_{2}$ concentrations, specifically from 300 $^{circ}hbox{C}$ and 1000-ppm $hbox{H}_{2}/hbox{N}_{2}$, respectively, the sensitivity of HFETs at $V_{rm gs} = -hbox{3.5} hbox{V}$ and $V_{rm ds} = hbox{1} hbox{V}$ is more than three orders higher than their sensitivity at $V_{rm gs} = hbox{0} hbox{V}$ and the sensitivity of Schottky diodes.   相似文献   

19.
The positive bias temperature instability (PBTI) characteristics of contact-etch-stop-layer (CESL)-strained $hbox{HfO}_{2}$ nMOSFET are thoroughly investigated. For the first time, the effects of CESL on an $hbox{HfO}_{2}$ dielectric are investigated for PBTI characteristics. A roughly 50% reduction of $V_{rm TH}$ shift can be achieved for the 300-nm CESL $hbox{HfO}_{2}$ nMOSFET after 1000-s PBTI stressing without obvious $ hbox{HfO}_{2}/hbox{Si}$ interface degradation, as demonstrated by the negligible charge pumping current increase ($≪$ 4%). In addition, the $hbox{HfO}_{2}$ film of CESL devices has a deeper trapping level (0.83 eV), indicating that most of the shallow traps (0.75 eV) in as-deposited $ hbox{HfO}_{2}$ film can be eliminated for CESL devices.   相似文献   

20.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号