首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GaN材料具有高的击穿场强、高的载流子饱和速度和能形成高迁移率、高密度的二维电子气,使得GaN功率开关器件具有关断电压高、导通电阻小、工作频率高等特点。GaN功率开关器件将成为高效率与超高频(UHF)电力电子学发展的重要基础之一。综述了GaN功率开关器件的发展历程、现状、关键技术突破、应用研究和微功率变换集成。重点评估了常开和常关两类GaN功率开关器件的异质结外延材料的结构、器件结构优化、器件的关键工艺、增强型器件的形成技术、器件性能、可靠性、应用特点和微系统集成。最后总结了新世纪以来GaN新一代电力电子器件技术进步的亮点。  相似文献   

2.
GaN基HFET的新进展   总被引:2,自引:1,他引:1  
回顾了氮化镓 ( Ga N)基异质结场效应晶体管 ( HFET)的发展 ,概述了它的直流和微波特性。制作氮化镓基 HFET可以采用不同的器件结构 ,不同的结构有各自的优点 ,对器件性能有很大影响。多数器件采用了其中两种比较成熟的结构 ,文中对这两种结构进行了讨论  相似文献   

3.
GaN材料具有高的击穿场强、高的载流子饱和速度和能形成高迁移率、高密度的二维电子气,使得GaN功率开关器件具有关断电压高、导通电阻小、工作频率高等特点。GaN功率开关器件将成为高效率与超高频(UHF)电力电子学发展的重要基础之一。综述了GaN功率开关器件的发展历程、现状、关键技术突破、应用研究和微功率变换集成。重点评估了常开和常关两类GaN功率开关器件的异质结外延材料的结构、器件结构优化、器件的关键工艺、增强型器件的形成技术、器件性能、可靠性、应用特点和微系统集成。最后总结了新世纪以来GaN新一代电力电子器件技术进步的亮点。  相似文献   

4.
基于Sentaurus Workbench(SWB)TCAD可制造性设计平台进行AlGaN/GaN器件的结构设计和仿真,并对影响二维电子气的重要参数因素进行了研究及优化,诸如AlGaN势垒层中Al组分x、AlGaN势垒层厚度h、应变弛豫度r和栅偏压Vg等因素。参数相关性的制约结果,无疑会反映在对器件物理特性的制约及影响上。研究结果表明,在一定条件下增大势垒层中Al组分和势垒层厚度可以提高器件的电流传输特性。然而随着二者的不断增大将会引起应变弛豫的发生,而应变弛豫的发生会降低器件的性能。  相似文献   

5.
报道了蓝宝石衬底上AlGaN/GaNHFET的制备以及室温下器件的性能。器件栅长为0.8μm,源漏间距为3μm,得到器件的最大漏电流密度为0.7A/mm,最大跨导为242.4mS/mm,截止频率(fT)和最高振荡频率(fmax)分别为45GHz和100GHz。同时器件的脉冲测试结果显示,SiN钝化对大栅宽器件的电流崩塌效应不能彻底消除。  相似文献   

6.
赵子奇  杜江锋  杨谟华 《微电子学》2014,(5):692-695,700
针对传统垂直GaN基异质结场效应晶体管中,由于GaN电流阻挡层内p型杂质激活率低而导致的漏电问题,提出了一种使用AlGaN极化掺杂电流阻挡层的垂直GaN基异质结场效应晶体管结构。在AlGaN极化掺杂电流阻挡层中,通过Al组分渐变而产生的极化电场来提升p型杂质激活率,能更加有效地抑制截止状态下通过极化掺杂电流阻挡层的泄漏电流,从而提升器件的耐压能力。此外,极化掺杂电流阻挡层内空穴浓度的增大会降低器件导通电阻,但由于极化掺杂电流阻挡层与n-GaN缓冲层之间形成的二维电子气会阻挡耗尽层向缓冲层内的扩展,极化掺杂电流阻挡层的使用对器件导通电阻几乎没有影响。  相似文献   

7.
由于晶格的反转和随之而来的极化场的反转,N极性面氮化物材料已经成为微波功率器件应用的理想材料之一。在2英寸(1英寸=2.54cm)偏角度4H-SiC衬底上通过金属有机物化学气相沉积(MOCVD)的方法生长了N极性面GaN/AlGaN异质结材料,使用X射线衍射仪(HR-XRD)、原子力显微镜(AFM)、Raman光谱仪和扫描电子显微镜(SEM)等对材料进行了表征。结果表明,N极性面GaN/AlGaN异质结材料的二维电子气面密度和迁移率分别为0.92×1013cm^(-2)和1035cm^2/(V·s)。制备了N极性GaN/AlGaN异质结场效应晶体管(HFET)。测试结果表明,1μm栅长的n极性面GaN/AlGa NHFET器件峰值跨导为88.9mS/mm,峰值电流为128mA/mm。  相似文献   

8.
对AlGaN/GaN HFET纵向的常规结构、倒置结构和双异质结进行了研究,结果表明:常规结构的材料生长简单、容易控制,倒置结构的直流性能低于常规结构,而双异质结虽然在材料生长方面较为复杂,但它可以获得较常规结构更为优良的直流特性.  相似文献   

9.
对AlGaN/GaN HFET纵向的常规结构、倒置结构和双异质结进行了研究,结果表明:常规结构的材料生长简单、容易控制,倒置结构的直流性能低于常规结构,而双异质结虽然在材料生长方面较为复杂,但它可以获得较常规结构更为优良的直流特性.  相似文献   

10.
基于硅基p-GaN/AlGaN/GaN异质结材料结构,研制了一款横向结构的高压增强型GaN高电子迁移率晶体管(GaN HEMT)器件。通过采用自对准栅刻蚀与损伤修复技术以及低温无金欧姆合金工艺实现了较低的导通电阻,并借助于叠层介质钝化和多场板峰值抑制技术提升了器件的击穿特性。测试结果表明,所研制GaN器件的阈值电压为1.95 V(VGS=VDS,IDS=0.01 mA/mm),导通电阻为240 mΩ(VGS=6 V,VDS=0.5 V),击穿电压高于1 400 V(VGS=0 V,IDS=1μA/mm),彰显了硅基p-GaN栅结构AlGaN/GaN HEMT器件在1 200 V等级高压应用领域的潜力。  相似文献   

11.
首次采用CF4等离子体技术实现可用于功率变换的增强性AlGaN/GaN功率器件。实验结果表明,当AlGaN/GaN器件经功率150W和时间150s等离子体轰击后,器件阈值电压从-4V被调制约为0.5V,表现为增强型。当漂移区LGD从5μm增加到15μm,器件的击穿电压从50V迅速增大到400V,电压增幅达350V。采用长度为3μm源场板结构将器件击穿电压明显地提高,击穿电压增加约为475V,且有着比硅基器件更低的比导通电阻,约为2.9mΩ.cm2。器件模拟结果表明,因源场板在远离栅边缘的漂移区中引入另一个电场强度为1.5MV/cm的电场,从而有效地释放了存在栅边缘的电场,将高达3MV/cm的电场减小至1MV/cm。微波测试结果表明,器件的特征频率fT和最大震荡频率fMAX随Vgs改变,正常工作时两参数均在千兆量级。栅宽为1mm的增强型功率管有较好的交直流和瞬态特性,正向电流约为90mA。故增强型AlGaN/GaN器件适合高压高频大功率变换的应用。  相似文献   

12.
提出了一种能带调制模型,通过在异质结界面处引入负离子电荷(如氟离子)调制异质结处的局部能带分布,实现了对异质结界面处的高密度2DEG的改变。基于能带调制模型,提出了一种复合调制沟道AlGaN/GaNHFET器件。通过在增强型沟道调制区和RESURF调制区分别引入不同剂量的负离子,不仅实现了增强型器件,而且可以降低尖峰电场,优化异质结电场分布,提高器件击穿电压。通过器件仿真软件对其器件工作原理进行了模拟分析,并通过实验结果表明,其器件品质因子FOM由传统器件的4.8MW.cm-2提高到26.7MW.cm-2。  相似文献   

13.
14.
简要介绍了垂直双扩散功率场效应晶体管(VDMOS)的研究现状和发展历史.针对功率VDMOS器件击穿电压和导通电阻之间存在的矛盾,重点介绍了几种新型器件结构(包括沟槽栅VDMOS、超结VDMOS、半超结VDMOS)的工作原理和结构特点,以及其在制造工艺中存在的问题.对不同器件结构的优缺点进行了比较分析.对一些新型衍生结构...  相似文献   

15.
采用再生长n+ GaN非合金欧姆接触工艺研制了具有高电流增益截止频率(fT)的InAlN/GaN异质结场效应晶体管 (HFETs),器件尺寸得到有效缩小,源漏间距减小至600 nm.通过优化干法刻蚀和n+ GaN外延工艺,欧姆接触总电阻值达到0.16 Ω·mm,该值为目前金属有机化学气相沉积(MOCVD)方法制备的最低值.采用自对准电子束曝光工艺实现34 nm直栅.器件尺寸的缩小以及欧姆接触的改善,器件电学特性,尤其是射频特性得到大幅提升.器件的开态电阻(Ron)仅为0.41 Ω·mm,栅压1 V下,漏源饱和电流达到2.14 A/mm.此外,器件的电流增益截止频率(fT)达到350 GHz,该值为目前GaN基HFET器件国内报道最高值.  相似文献   

16.
研究了总栅宽为100μm栅凹槽结构的AlGaN/GaN HFET,采用相同的外延材料,凹槽栅结构器件与平面栅结构器件比较其饱和电流变化小,跨导由260.3mS/mm增加到314.8mS/mm,n由2.3减小到1.7,栅极漏电减小一个数量级.在频率为8GHz时,负载牵引系统测试显示,当工作电压增加到40V,输出功率密度达到11.74W/mm.  相似文献   

17.
功率场效应晶体管VDMOS导通电阻的优化   总被引:1,自引:0,他引:1  
本文对大功率场效应晶体管VDMOS器件的导通电阻与单元结构的参数进行了研究,重点讨论了栅宽、外延层厚度和浓度与导通电阻的关系,计算出的I-V曲线随单元结构参数的不同有明显的改变,为实际研制工作提供了依据。  相似文献   

18.
作为第三代半导体材料的典型代表,宽禁带半导体氮化镓(GaN)具有许多硅材料所不具备的优异性能,是高频、高压、高温和大功率应用的优良半导体材料,在民用和军事领域具有广阔的应用前景。随着GaN技术的进步,特别是大直径硅(Si)基GaN外延技术的逐步成熟并商用化,GaN功率半导体技术有望成为高性能低成本功率技术解决方案,从而受到国际著名半导体厂商和研究单位的关注。总结了GaN功率半导体器件的最新研究,并对GaN功率器件发展所涉及的器件击穿机理与耐压优化、器件物理与模型、电流崩塌效应、工艺技术以及材料发展等问题进行了分析与概述。  相似文献   

19.
基于Si基GaN HEMT材料制作了击穿电压530V、无场板的功率电子器件。器件制作工艺与现有GaN微波功率器件工艺兼容。研究了器件栅漏间距与击穿电压的关系。器件栅宽为100μm,栅漏间距为15μm时,得到的GaN HEMT器件击穿电压530V,最大电流密度536mA/mm。器件的特征通态电阻为1.54mΩ·cm2,是相同击穿电压Si MOSFET器件特征通态电阻的二十五分之一。所制作的6mm栅宽器件击穿电压400V,输出电流2A。该器件的研制为制作低成本GaN HEMT功率器件奠定了基础。  相似文献   

20.
提出采用硅基F-离子处理技术研制硅基GaN超级结高压器件,并建立了三维电荷器件模型。实验结果表明,当栅极电压偏置于-1.25~-0.25 V时,漂移区长度为10μm的新器件其峰值跨导g m(max)出现最大值约为390 mS/mm,且较为平缓。该器件导通电阻较低,比导通电阻为0.562 5 mΩ·cm2,仅为相同漂移区长度的常规增强型GaN高压器件比导通电阻率2.25 mΩ·cm2的25%。该器件击穿特性与漂移区长度呈较好的线性关系,并在漂移区长度为15μm时,击穿电压接近硅基GaN高压器件的理想击穿电压,约为657 V,比前者器件结构的击穿电压提高了约182 V。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号