首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional magnetic resonance imaging (MRI) method to measure pulmonary edema and lung microvascular barrier permeability was developed and compared with conventional methods in nine mongrel dogs. MRIs were obtained covering the entire lungs. Injury was induced by injection of oleic acid (0.021-0.048 ml/kg) into a jugular catheter. Imaging followed for 0.75-2 h. Extravascular lung water and permeability-related parameters were measured from multiple-indicator dilution curves. Edema was measured as magnetic resonance signal-to-noise ratio (SNR). Postinjury wet-to-dry lung weight ratio was 5.30 +/- 0.38 (n = 9). Extravascular lung water increased from 2.03 +/- 1.11 to 3.00 +/- 1.45 ml/g (n = 9, P < 0.01). Indicator dilution studies yielded parameters characterizing capillary exchange of urea and butanediol: the product of the square root of equivalent diffusivity of escape from the capillary and capillary surface area (D1/2S) and the capillary permeability-surface area product (PS). The ratio of D1/2S for urea to D1/2S for butanediol increased from 0.583 +/- 0.027 to 0.852 +/- 0.154 (n = 9, P < 0.05). Whole lung SNR at baseline, before injury, correlated with D1/2S and PS ratios (both P < 0.02). By using rate of SNR change, the mismatch of transcapillary filtration flow and lymph clearance was estimated to be 0.2-1.8 ml/min. The filtration coefficient was estimated from these values. Results indicate that pulmonary edema formation during oleic acid injury can be imaged regionally and quantified globally, and the results suggest possible regional quantification by using three-dimensional MRI.  相似文献   

2.
Preliminary animal experience with partial liquid ventilation (PLV) suggests that this therapy may diminish neutrophil invasion and capillary leak during acute lung injury. We sought to confirm these findings in a model of shock-induced lung injury. Sixty anesthetized rats were studied. After hemorrhage to an arterial pressure of 25 mmHg for 45 min, animals were resuscitated with blood and saline and treated with gas ventilation alone or with 5 ml/kg of intratracheally administered perflubron. Myeloperoxidase activity was used to measure lung neutrophil content. A permeability index (the bronchoalveolar-to-blood ratio of 125I-labeled albumin activity) quantified alveolar leak. Injury caused an increase in myeloperoxidase that was reversed by PLV (injury = 0.837 +/- 0.452, PLV = 0.257 +/- 0.165; P < 0.01). Capillary permeability also increased with hemorrhage, with a strong trend toward improvement in the PLV group (permeability indexes: injury = 0.094 +/- 0.102, PLV = 0.045 +/- 0.045; 95% confidence interval for injury--PLV: -0.024, 0.1219). We conclude that PLV is associated with a decrease in pulmonary neutrophil accumulation and a trend toward decreased capillary leak after hemorrhagic shock.  相似文献   

3.
Mechanical ventilation with high peak inspiratory pressure and large tidal volume (VT) produces permeability pulmonary edema. Whether it is mean or peak inspiratory pressure (i.e., mean or end-inspiratory volume) that is the major determinant of ventilation-induced lung injury is unsettled. Rats were ventilated with increasing tidal volumes starting from different degrees of FRC that were set by increasing end-expiratory pressure during positive-pressure ventilation. Pulmonary edema was assessed by the measurement of extravascular lung water content. The importance of permeability alterations was evaluated by measurement of dry lung weight and determination of albumin distribution space. Pulmonary edema with permeability alterations occurred regardless of the value of positive end-expiratory pressure (PEEP), provided the increase in VT was large enough. Similarly, edema occurred even during normal VT ventilation provided the increase in PEEP was large enough. Furthermore, moderate increases in VT or PEEP that were innocuous when applied alone, produced edema when combined. The effect of PEEP was not the consequence of raised airway pressure but of the increase in FRC since similar observations were made in animals ventilated with negative inspiratory pressure. However, although permeability alterations were similar, edema was less marked in animals ventilated with PEEP than in those ventilated with zero end-expiratory pressure (ZEEP) with the same end-inspiratory pressure. This "beneficial" effect of PEEP was probably the consequence of hemodynamic alterations. Indeed, infusion of dopamine to correct the drop in systemic arterial pressure that occurred during PEEP ventilation resulted in a significant increase in pulmonary edema. In conclusion, rather than VT or FRC value, the end-inspiratory volume is probably the main determinant of ventilation-induced edema. Hemodynamic status plays an important role in modulating the amount of edema during lung overinflation but does not fundamentally modify the characteristics of this edema which is consistently associated with major permeability alterations. These results may be relevant for ventilatory strategies during acute respiratory failure.  相似文献   

4.
PURPOSE: The aim of this study was to assess the respective role of a small elevation in pulmonary capillary pressure, airway pressure, or both on alveolar capillary barrier permeability in an isolated perfused rat lung model. MATERIALS AND METHODS: Four groups were studied with low or high airway pressure (LA: 10 mL/kg (tidal volume); HA: 20 mL/kg), low or high pulmonary artery pressure (LP: 9 mm Hg; HP: 12 mm Hg): LALP, HALP, LAHP, and HAHP. The lungs were ventilated and perfused ex vivo for 30 minutes. Quantification of fluorescein isothiocyanate-labeled (FITC) dextran in bronchoalveolar lavage (BAL) fluid and radiolabeled tracers assessed alveolar capillary barrier permeability. RESULTS: BALF FITC-dextran was similar in the three groups with either one or two low-pressure parameters (LALP, LAHP, HALP), but high amounts were found in the HAHP group (375.2 x 10(-6) mg/mL v, respectively, 21.4, 26.2, and 30 x 10(-6) mg/mL, P = .0001). These results were consistent with the albumin space and extravascular lung water: higher values only in the HAHP group statistically different from the other groups (P < .002). Interalveolar pore examined with scanning electron microscopy showed an increase in diameters between LALP and HAHP (P < .0001). CONCLUSIONS: We can conclude that elevation of either the pulmonary artery pressure from 8 to 11 mm Hg or the alveolar pressure from 10 to 15 mm Hg alone does not change the permeability of the alveolar capillary membrane; however, there is an additive effect of these pressures.  相似文献   

5.
The relationship between extravascular lung water volume (ELWV) and chest radiographical findings was studied in general-anesthetized beagles. The dogs were experimentally injected with oleic acid to increase pulmonary vascular permeability. When the ELWV value in the dogs increased more than approximately 37% from the control value, their chest radiographs began to show signs of pulmonary edema. At this time, the chest X-ray density increased to 10% above the control level. PaO2 decreased, and PaCO2 increased after the administration of oleic acid. This clearly showed that the pulmonary gas exchange function was reduced following increasing ELWV. This comparison showed that probably the thermal-sodium double indicator dilution measurement of ELWV can detect slight hyperpermeability pulmonary edema that does not show on chest radiographs. The chest radiograph was therefore not suitable for the detection of slight pulmonary edema, because it did not show any changes in the early stages in hyperpermeability pulmonary edema.  相似文献   

6.
Ventilator-associated lung injury (VALI) is caused by high tidal volume (VT) excursions producing microvascular leakage and pulmonary edema. However, the effects of VALI on lung edema clearance and alveolar epithelial cells' Na,K-ATPase function have not been elucidated. We studied lung edema clearance in the isolated-perfused rat lung model after ventilation for 25, 40, and 60 min with high VT (peak airway opening pressure [Pao] of approximately 35 cm H2O) and compared them with low VT ventilation (Pao approximately 8 cm H2O), moderate VT ventilation (Pao approximately 20 cm H2O), and nonventilated rats. Lung edema clearance in control rats was 0.50 +/- 0.02 ml/h and decreased after 40 and 60 min of high VT to 0.26 +/- 0.03 and 0.11 +/- 0.08 ml/h, respectively (p < 0.01), but did not change after low VT and moderate VT ventilation at any time point. Lung permeability to small (22Na+, [3H]mannitol) and large solutes (fluorescein isothiocyanate-tagged albumin [FITC-albumin]) increased significantly in rats ventilated for 60 min with high VT, compared with low VT, moderate VT, and control rats (p < 0.01). Paralleling the impairment in lung edema clearance we found a decrease in Na,K-ATPase activity in alveolar type II (ATII) cells isolated from rats ventilated with moderate VT and high VT for 40 min without changes in alpha1 Na,K-ATPase mRNA. We reason that VALI decreases lung ability to clear edema by inhibiting active sodium transport and Na,K-ATPase function in the alveolar epithelium.  相似文献   

7.
In experimental models of acute lung injury, cyclooxygenase inhibition improves oxygenation, presumably by causing a redistribution of blood flow away from edematous lung regions. This effect on perfusion pattern could also reduce alveolar edema formation. On the other hand, pulmonary pressures usually increase after cyclooxygenase inhibition, an effect that could exacerbate edema accumulation. Therefore we tested the following hypothesis: the total accumulation of pulmonary edema in dogs during a 24- to 28-h period of observation after acute lung injury caused by oleic acid will be less in a group of animals treated with meclofenamate (n = 6) or with the thromboxane-receptor blocker ONO-3708 (n = 5) than in a group of animals treated with oleic acid alone (placebo, n = 6). Lung water concentrations (LWC), the regional pattern of pulmonary perfusion, and protein permeability were measured with the nuclear medicine imaging technique of positron emission tomography. After 24-28 h, LWC was significantly less (P < 0.05) in the ONO-3708 group than in the meclofenamate group (a similar trend was seen compared with the placebo group, P = 0.12). After 24-28 h, pulmonary arterial pressures were highest in the meclofenamate group. Regardless of group, the only significant correlation with the change in LWC was with the integral of pulmonary pressures over the 24- to 28-h period. The data suggest that thromboxane inhibition will reduce edema accumulation in acute lung injury but that this effect depends on reducing as much as possible the simultaneous development of pulmonary hypertension from other causes.  相似文献   

8.
The old division of lung edema into two categories--cardiogenic (hydrostatic) and noncardiogenic (increased permeability)--is no longer adequate. For instance, it fails to distinguish between the capillary leak caused by acute respiratory distress syndrome from that caused by interleukin-2 treatment. Further, it fails to account for the capillary leak ('stress-failure') that may accompany edema. A modern view of edema must recognize the natural barriers to the formation and spread of edema. These barriers are the capillary endothelium and the alveolar epithelium. Varying degrees of damage to them can account for the varying radiographic and clinical manifestations of lung edema. Thus, interleukin-2 administration causes increased endothelial permeability without causing alveolar epithelial damage. The result is lung edema that is largely confined to the interstitium, causing little hypoxia and clearing rapidly. However, acute respiratory distress syndrome, which is characterized by extensive alveolar damage, causes air-space consolidation, severe hypoxia, and slow resolution. Thus, a reasonable classification of lung edema requires at least four categories: 1) hydrostatic edema; 2) acute respiratory distress syndrome (permeability edema caused by diffuse alveolar damage); 3) permeability edema without alveolar damage; and (4) mixed hydrostatic and permeability edema. The authors emphasize the importance of the barriers provided by the capillary endothelium and the alveolar epithelium in determining the clinical and radiographic manifestations of edema. In general, when the alveolar epithelium is intact, the radiographic manifestations are those of interstitial (not air-space) edema; this radiographic pattern predicts a mild clinical course and prompt resolution.  相似文献   

9.
Pulmonary dysfunction in awake rabbits was induced by intravenous infusion of a highly purified human fibrin split product (fragment D). The dose of infused fragment D was chosen to achieve observed plasma concentrations of fibrin split products in hospitalized patients with severe burns or trauma (about 100mug of FSP/ml of blood). Four hours after infusion, the animals displayed a clinical and pathological pattern which closely resembled post-traumatic acute respiratory distress syndrome, including hypoxia, hypocarbia, thrombocytopenia, increased pulmonary capillary permeability to albumin, interstitial edema, hypertrophy of alveolar lining cells, and intra-alveolar hemorrhage. In vivo production of fibrin split products by infusion of thrombin with induction of secondary fibrinolysis produced similar pulmonary changes, although intravascular clots and platelet aggregates also were prominent. Infusion of human fibrinogen and human albumin at identical doses failed to induce pulmonary dysfuction. The results suggest that fibrin split products (fragment D) alone are toxic to the respiratory system and may contribute to the development of acute respiratory distress syndrome in severely traumatized or burned patients.  相似文献   

10.
The relationship between right duct lymph flow and extravascular lung water was studied in 3 normal dogs and 15 dogs with pulmonary edema induced by alpha-naphthylthiourea (ANTU). Right duct lymph was collected in a pouch created by ligating jugular, subclavian, and brachiocephalic veins. Extravascular lung water was measured in vivo by double indicator dilution and post-mortem by weighting lungs before and after drying. Cardiac output, pulmonary artery and pulmonary artery wedge pressures, and the concentration of protein and electrolytes in plasma and right duct lymph were determined. Eight lungs were examined by light and electron microscopy. There was a direct relationship between right duct lymph flow (RDLF in milliters per hour per gram dry lung) and extravascular lung water (Qwl in milliliters per gram dry lung) which was best described by the equation RDLF=0.75-0.26 Qwl+0.03 (Qwl).2 Dogs with severe ANTU-induced edema had extensive lung capillary endothelial destruction but only mild interstitial swelling and no visible damage to type I alveolar epithelial cells. Cardiac output, pulmonary artery and wedge pressures, and protein and electrolyte concentrations did not correlate with either extravascular water or right duct flow. Thus, in ANTU-induced pulmonary edema right duct lymph flow was directly related to extravascular lung water with the highest flows occurring with severe edema. The absence of a rapid increase in lymph flow with small increases in extravascular water may be due to early sequestration of fluid in the alveolar space. Hemodynamic changes did not account for changes in lung water or lymph flow. The pulmonary interstitial factors relating increased extravascular water to lymph drainage remain to be determined.  相似文献   

11.
BACKGROUND: The lung is particularly susceptible to reperfusion injury, both experimentally and clinically after transplantation. The extracellular-type preservation solution Celsior, which has been predominantly studied in cardiac preservation, has components designed to prevent cell swelling, free radical injury, energy depletion, and calcium overload. Using an isolated blood-perfused rat lung model, we investigated whether Celsior would decrease preservation injury and improve lung function after cold ischemic storage and reperfusion compared to Euro-Collins (EC) and University of Wisconsin (UW) solutions. METHODS: Lewis rat lungs were isolated, flushed with the respective cold preservation solution, and then stored at 4 degrees C for 6 or 12 hr. After ischemic storage, the lung block was suspended from a force transducer, ventilated with 100% O2, and reperfused for 90 min with fresh blood via a cannula in the pulmonary artery. Lung compliance, alveolar-arterial oxygen difference, and outflow oxygen tension were all measured. The capillary filtration coefficient (Kf), a sensitive measure of changes in microvascular permeability, was determined. RESULTS: For 6 hr of cold storage, lungs stored in Celsior had lower Kf values than those stored in EC, indicating decreased microvascular permeability. No other significant differences were noted between Celsior and EC or UW. For 12 hr of cold storage, Celsior provided increased oxygenation, decreased alveolar-arterial O2 differences, increased compliance, and decreased Kf values as compared to both EC and UW. CONCLUSIONS: Celsior provides better lung preservation than EC or UW as demonstrated by increased oxygenation, decreased capillary permeability, and improved lung compliance, particularly at 12-hr storage times. These results are highly relevant, inasmuch as EC and UW are the most common clinically used lung preservation solutions. Further studies of Celsior in experimental and clinical lung transplantation, as well as in other solid organs, are indicated.  相似文献   

12.
Isoproterenol (ISO) and forskolin, agents that increase adenosine 3',5'-cyclic monophosphate (cAMP) via adenylyl cyclase activation, reverse lung injury associated with increased microvascular permeability. We studied the role of rolipram, a relatively isozyme-selective cAMP phosphodiesterase (PDE) inhibitor, in reversing increased capillary permeability due to ischemia-reperfusion (I/R), a form of oxidant injury in the lung, by using the isolated perfused rat lung model. Rolipram (2 microM) administered after 45 min of ischemia and 45 min of reperfusion reduced I/R-increased permeability as measured by the capillary filtration coefficient to control lung values. Computer image analysis of air space edema and perivascular cuffing, as well as wet-to-dry weight ratios, confirms the permeability reversal by rolipram administration. Rolipram inhibition of cAMP PDE in the lung was assessed by using [3H]adenine prelabeling adapted for the whole lung and perfusate [3H]cAMP accumulation. Rolipram failed to increase perfusate cAMP alone but dramatically increased perfusate cAMP above ISO alone. Dose-response relationships of ISO or rolipram show a close correlation of the half-maximal effective dose (ED50) for injury reversal and perfusate cAMP production. The combination of rolipram and ISO produced synergistic reversal of I/R injury. We conclude that reversal of I/R-induced increased microvascular permeability can be achieved with rolipram and that the mechanism of action of rolipram is probably through PDE isozyme-selective inhibition. The similarity of the ED50 values for cAMP efflux and reversal of permeability increases also supports a close coupling between cAMP accumulation and endothelial cell permeability.  相似文献   

13.
We studied the mechanisms by which pulmonary solute clearance is affected by lung inflation. We examined the pulmonary clearance of inhaled technetium-99m diethylenetriaminepentaacetic acid (99mTc-DTPA) together with changes in lung volumes in healthy men after applying graded levels of continuous external negative pressure (CNP) and positive end-expiratory pressure (PEEP). The 99mTc-DTPA clearance increased from the baseline during -15 cm H2O CNP (p < 0.005) and during -20 cm H2O CNP (p < 0.001). The 99mTc-DTPA clearance increased during +15 cm H2O PEEP (p < 0.001). However, the changes during both -10 cm H2O CNP and +10 cm H2O PEEP did not differ from the baseline, indicating a threshold effect. On the other hand, changes in FRC during CNP were proportional to the applied pressures and were similar to those during PEEP with corresponding pressures. These results suggest that pulmonary vascular recruitment induced by CNP does not affect pulmonary 99mTc-DTPA clearance. This threshold effect suggests that the increased clearance is due to changes in membrane permeability rather than in the area of the alveolar-capillary interface or the lining layer thickness. We concluded that the effect of lung inflation on solute clearance may be mediated by the changes in membrane permeability.  相似文献   

14.
Lung metabolism has been extremely difficult to determine in vivo primarily because the lung is overwhelmed by a great blood flow that generally makes the Fick principle inadequate. Largely for reasons such as this, investigators have had to rely on in vitro preparations. The isolated perfused lung has the apparent advantage of being similar to the lung in vivo when compared with other preparations. For instance, there is evidence that the capillary bed of the lung may alter substrates and influence their subsequent metabolism. Substrates have contact with the capillary endothelium in isolated perfused lungs but not to tissue slices, homogenates, or isolated cells. Our studies indicate that precursors of saturated phosphatidylcholine may include lipids, which are hydrolyzed in the capillary of the isolated perfused lung and thus become substrates such as free fatty acids, etc. However, tissue slices do not use the esterified lipids to the same extent, presumably because in this preparation the enzymes in the capillary endothelium do not have contact with the esterified lipids. Substrate utilization of the isolated perfused lung may be considerably altered by inflation of the lung or by pulmonary edema. Although glucose utilization and palmitate oxidation by the isolated perfused lung and by tissue slices of the rat lung are very similar, if the isolated perfused lung develops pulmonary edema, glucose utilization increases by nearly 100%. This phenomenon is apparently not due solely to fluid in the airspaces because in control studies with fluid added into the airways the glucose utilization did not increase to the degree observed with edematous lungs. Lung distention is associated with increased glucose consumption but marked distention is also associated with pulmonary edema. The effect of lung distension may be a direct effect or it may be secondary to the pulmonary edema.  相似文献   

15.
Ventilation during ischemia attenuates ischemia-reperfusion lung injury, but the mechanism is unknown. Increasing tissue cyclic nucleotide levels has been shown to attenuate lung ischemia-reperfusion injury. We hypothesized that ventilation prevented increased pulmonary vascular permeability during ischemia by increasing lung cyclic nucleotide concentrations. To test this hypothesis, we measured vascular permeability and cGMP and cAMP concentrations in ischemic (75 min) sheep lungs that were ventilated (12 ml/kg tidal volume) or statically inflated with the same positive end-expiratory pressure (5 Torr). The reflection coefficient for albumin (sigmaalb) was 0.54 +/- 0.07 and 0.74 +/- 0. 02 (SE) in nonventilated and ventilated lungs, respectively (n = 5, P < 0.05). Filtration coefficients and capillary blood gas tensions were not different. The effect of ventilation was not mediated by cyclic compression of alveolar capillaries, because negative-pressure ventilation (n = 4) also was protective (sigmaalb = 0.78 +/- 0.09). The final cGMP concentration was less in nonventilated than in ventilated lungs (0.02 +/- 0.02 and 0.49 +/- 0. 18 nmol/g blood-free dry wt, respectively, n = 5, P < 0.05). cAMP concentrations were not different between groups or over time. Sodium nitroprusside increased cGMP (1.97 +/- 0.35 nmol/g blood-free dry wt) and sigmaalb (0.81 +/- 0.09) in nonventilated lungs (n = 5, P < 0.05). Isoproterenol increased cAMP in nonventilated lungs (n = 4, P < 0.05) but had no effect on sigmaalb. The nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester had no effect on lung cGMP (n = 9) or sigmaalb (n = 16) in ventilated lungs but did increase pulmonary vascular resistance threefold (P < 0.05) in perfused sheep lungs (n = 3). These results suggest that ventilation during ischemia prevented an increase in pulmonary vascular protein permeability, possibly through maintenance of lung cGMP by a nitric oxide-independent mechanism.  相似文献   

16.
Asthma is a condition in which there is airway hyperresponsiveness, with the propensity for widespread, reversible airways narrowing on exposure to diverse inciting factors (triggers). Inhalation of nonspecific agents such as methacholine or histamine leads to bronchoconstriction in most cases, and in some, the bronchoconstriction follows exposure to specific agents such as antigen or occupational irritants. Chest tightness and cough, which are the most common symptoms of asthma, are probably the result of inflammation mucus plugs, edema, or smooth muscle constriction in the small peripheral airways. Because major obstruction of the peripheral airways can occur without recognizable increases of airway resistance or FEV1, the physiologic alterations in acute exacerbations are generally subtle in the early stages. Poorly ventilated alveoli subtending obstructed bronchioles continue to be perfused, and as a consequence, the P(A-a)O2 increases and the PaO2 decreases. At this stage, ventilation is generally increased, with excessive elimination of carbon dioxide and respiratory alkalemia. In the more severe exacerbation, lung volume is increased and the static volume-pressure curve is shifted up (lung volume is greater) and to the left (pressure is lower) while the shape of the curve is unaltered. The airway obstruction is reversible and there is generally improvement in air flow rates following administration of beta-agonists and anti-inflammatory agents. The changes in mechanical properties are also reversible, and therapeutic intervention usually results in a shift of the PV curve downward toward the normal position, for example, a decrease in TLC and an increase in the elastic recoil pressure at any particular lung volume. Failure to take these changes into account may underestimate the impact of therapy. The PaO2 decreases (and the P(A-a)O2 increases) as the work of breathing increases, and when it becomes excessive (and/or the FEV1 falls below 20% to 25%), the PaCO2 begins to increase. Therefore, in any patient with asthma, a decreasing PaO2 and an increasing PaCO2, even into the normal range, indicates severe airway obstruction that is leading to respiratory muscle fatigue and patient exhaustion.  相似文献   

17.
To determine the influence of intermittent positive pressure breathing (IPPB), the level of pulmonary capillary wedge pressure (PCWP) was compared during IPPB and after a short period off the respirator in 68 occasions on 42 patients with an acute respiratory failure (ARF) of various etiologies. During IPPB, the average PCWP was in the normal range in patients with toxic or neurologic comas and in cases of increased pulmonary capillary permeability edema (IPCPE), PCWP slightly increased within chronic obstructive pulmonary disease (COPD) complicated with ARF and in hemodynamic acute pulmonary edema (HAPE). During the weaning stage, PCWP decreased in the groups of coma, COPD, and IPCPE, but increased in HAPE. The weaning test demonstrates that IPPB influenced PCWP in all patients. Therefore, PCWP cannot be assumed to represent the left ventricle filling pressure. The weaning test allows differentiation of IPCPE from HAPE. In the event of over-infusion or hypovolemia, PCWP measured under IPPB can lead to misinterpretation if not followed up by a second measurement off the respirator.  相似文献   

18.
We studied 20 patients with obstructive sleep apnea syndrome (OSAS) prospectively, before and after administering continuous positive airway pressure through a nasal mask (CPAPn) at night for 10 months, with the aim of determining the effects of ventilatory pattern of long-term treatment with CPAPn in OSAS patients. The following data were collected for all patients: anthropometric variables, lung function test results, arterial gasometric readings at rest, oxygen alveolar-arterial differential [Dif(A-a)O2)], central respiratory function variables at rest and during hypercapnic stimulus. Mean duration (range) of treatment with CPAPn was 12.5 (10-18) months. We observed a significant increase in PaO2 (p = 0.01) and a decrease in PaCO2 (p = 0.02) with slight variations in body weight and no changes in lung mechanics or in Dif(A-a)O2. The ventilatory pattern at rest showed an increased in VE and in respiratory frequency (p = 0.0003 and p = 0.033, respectively) with non significant changes in VT. The VT/Ti ratio increased (p = 0.015) and P0.1 decreased slightly (p = 0.025). We found no significant changes in the CO2 response slopes of VE or P0.1. In conclusion, CPAPn improves hypoxemia and hypercapnia in OSAS patients, above all by increasing baseline basal ventilation. The exact mechanisms implicated are poorly understood, but our data suggest a certain direct or indirect effect on respiratory muscles, reducing muscle fatigue, thus favoring greater availability during sleep.  相似文献   

19.
OBJECTIVE: To confirm the positive effect of prone positioning on oxygenation in patients with acute lung insufficiency. DESIGN: Clinical follow-up study. SETTING: The intensive care unit at a tertiary care academic hospital. PATIENTS: Thirteen patients suffering from severe acute lung insufficiency caused by trauma, septicemia, aspiration, and burn injury. Eleven of the patients had severe hypoxia (oxygenation indices [PaO2/FIO2] < or = 80 torr [< or = 10.7 kPa]). Patients > 70 yrs of age were excluded from the study. INTERVENTIONS: Treatment in the prone position without changing other ventilatory settings than FIO2 when saturation increased. MEASUREMENTS AND MAIN RESULTS: Twelve of the 13 patients responded to treatment in the prone position. The patient that did not respond improved her gas exchange when nitric oxide was instituted. She died, however, from a Gram-negative septicemia. No patient needed extracorporeal membrane oxygenation. Apart from the settings of FIO2 when saturation increased, the ventilatory settings were unchanged. In the prone position, the oxygenation index increased (p < .0002) and the alveolar-arterial oxygen gradient, P(A-a)O2, decreased dramatically (p < .0001). CONCLUSIONS: The prone position significantly improves impaired gas exchange due to severe acute lung insufficiency. It is suggested that this treatment is used before more complex modalities.  相似文献   

20.
PURPOSE OF STUDY: Interleukin-2 (IL-2) is a potent activator of lymphocytes, but its effectiveness as an anti-cancer agent is compromised by several adverse side effects including pulmonary edema. One explanation for the pulmonary toxicity of IL-2 is that activated lymphocytes directly induce the pulmonary vascular endothelium to become more leaky. METHODS: To test this hypothesis the number of total lymphocytes, gamma delta T cells, and CD2-positive cells (alpha beta T cells and natural killer cells) in peripheral blood and lung lymph of sheep were compared before and after IL-2 infusion. Hemodynamic and lymph dynamic changes were also evaluated. RESULTS: IL-2 decreased mean aortic pressure, increased cardiac output, lowered systemic vascular resistance, and doubled lung lymph flow (P < or = 0.05), but had no effect on plasma or lymph oncotic pressure. The lymph protein concentration and the lymph-to-plasma protein concentration ratio were not different after IL-2 infusion. IL-2 had no effect on the number of total lymphocytes, gamma delta T cells, or CD2-positive cells in the peripheral blood. In contrast, the number of total lymphocytes, gamma delta T cells, and CD2-positive cells in lung lymph decreased significantly (P < or = 0.05). CONCLUSIONS: The lymphocyte populations decreased more than could be explained by the increase in lymph flow, demonstrating that lung lymphocytes were not reduced simply by dilution. These results imply that the pulmonary edema associated with IL-2 is not caused by activated lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号