首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand redox-dependent arsenic partitioning, we performed batch sorption and desorption experiments using aquifer sands subjected to chemical and mineralogical characterization. Sands collected from the redox transition zone between reducing groundwater and oxic river water at the Meghna riverbank with HCl extractable Fe(III)/Fe ratio ranging from 0.32 to 0.74 are representative of the redox conditions of aquifers common in nature. One brown suboxic sediment displayed a partitioning coefficient (K(d)) of 7-8 L kg(-1) at equilibrium with 100 μg L(-1) As(III), while two gray reducing sediments showed K(d) of 1-2 L kg(-1). Lactate amendment to aquifer sands containing 91 mg kg(-1) P-extractable As resulted in the reduction of As and Fe with sediment Fe(III)/Fe decreasing from 0.54 to 0.44, and mobilized an equivalent of 64 mg kg(-1) As over a month. Desorption of As from nonlactate-amended sediment was negligible with little change in sediment Fe(III)/Fe. This release of As is consistent with microbial reduction of Fe(III) oxyhydroxides and the resulting decrease in the number of surface sites on Fe(III) oxyhydroxides. Arsenic partitioning (K(d)) in iron-rich, sulfur-poor aquifers with circumneutral pH is redox-dependent and can be estimated by HCl leachable sediment Fe(III)/Fe ratio with typical Fe concentrations.  相似文献   

2.
Permeable reactive barriers containing zerovalent iron are being increasingly employed for in situ remediation of groundwater contaminated with redox active metals and chlorinated organic compounds. This research investigated the effect of chromate concentration on its removal from solution by zerovalent iron. Removal rates of aqueous Cr(VI) by iron wires were measured in batch experiments for initial chromium concentrations ranging from 100 to 10 000 microg/L. Chromate removal was also measured in columns packed with zerovalent iron filings over this same concentration range. Electrochemical measurements were made to determine the free corrosion potential and corrosion rate of the iron reactants. In both the batch and column reactors, absolute rates of chromium removal declined with increasing chromate concentration. Corrosion current measurements indicated that the rate of iron corrosion decreased with increasing Cr(VI) concentrations between 0 and 5000 microg/L. At a Cr(VI) concentration of 10 000 microg/L, Tafel polarization diagrams showed that chromium removal was affected by its diffusion rate through a passivating oxide film and by the ability of iron to release Fe2+ at anodic sites. In contrast, water reduction was not mass transfer limited, but chromium did decrease the exchange current for the hydrogen evolution reaction. Even at the most passivating concentration of 10 000 microng/L, effluent Cr(VI) concentrations in the column reactors reached a steady state, indicating that passivation had also reached a steady state. Although chromate contributes to iron surface passivation, the removal rates are still sufficiently fast for in situ iron barriers to be effective for Cr(VI) removal at most environmentally relevant concentrations.  相似文献   

3.
Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 microg L(-1) in groundwater hydraulically upgradient of the PRB to values <1 microg L(-1) in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.  相似文献   

4.
Whereas serious health consequences of widespread consumption of groundwater elevated in As have been documented in several South Asian countries, the mechanisms responsible for As mobilization in reducing aquifers remain poorly understood. We document here a previously unrecognized and consistent relationship between dissolved As concentrations in reducing groundwater and the phosphate-mobilizable As content of aquifer sediment for a set of precisely depth-matched samples from across Bangladesh. The relationship holds across nearly 3 orders of magnitude in As concentrations and suggests that regional as well as local patterns of dissolved As in shallow groundwater are set by the solid phase according to a remarkably constant ratio of approximately 250 microg/L dissolved As per 1 mg/kg P-mobilizable As. We use this relationship in a simple model of groundwater recharge to propose that the distribution of groundwater As in shallow aquifers of the Bengal Basin could primarily reflect the different flushing histories of sand formations deposited in the region over the past several thousand years.  相似文献   

5.
We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicitytests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 microg/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (< 1micromol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.  相似文献   

6.
Biogeochemically modified pore waters from subterranean estuaries, defined as the mixing zone between freshwater and saltwater in a coastal aquifer, are transported to coastal waters through submarine groundwater discharge (SGD). SGD has been shown to impact coastal and perhaps global trace metal budgets. The focus of this study was to investigate the biogeochemical processes that control arsenic cycling in subterranean estuaries. Total dissolved As, as well as a suite of other trace metals and nutrients, were measured in a series of wells and sediment cores at the head of Waquoit Bay, MA. Dissolved As ranged from below detection to 9.5 microg/kg, and was associated with plumes of dissolved Fe, Mn, and P in the groundwater. Sedimentary As, ranging from 360 to 7500 microg/kg, was highly correlated with sedimentary Fe, Mn, and P. In addition, amorphous Fe (hydr)oxides were more efficient scavengers of dissolved As than the more crystalline forms of solid-phase Fe. Given that dissolved As in the surface bay water was lower than within the subterranean estuary, our results indicate that the distribution and type of Fe and Mn (hydr)oxides in coastal aquifers exert a major influence on the biogeochemical cycling of As in subterranean estuaries and, ultimately, the fate of groundwater-derived As in marine systems influenced by SGD.  相似文献   

7.
A flow-through pilot-scale system was tested for removal of Cr(VI) from contaminated groundwater in Glendale, California. The process consisted of the reduction of Cr(VI) to Cr(lll) using ferrous sulfate followed by coagulation and filtration. Results indicated that the technology could reduce influent Cr(VI) concentrations of 100 microg L(-1) to below detectable levels and also remove total Cr (Cr(VI) plus Cr(lll)) to very low concentrations (< 5 microg L(-1)) under optimized conditions. Complete reduction of Cr(VI) to Cr(lll) was accomplished with Fe(ll) doses of 10-50 times the Cr(Vl) concentration even in the presence of significant dissolved oxygen levels. The overall Cr removal efficiency was largely determined by the filterability of Cr(lll) and Fe(lll) precipitates, of which a relatively high filtration pH (7.5-7.6) and high filter loading rate (6 gpm ft(-2)) had negative impacts. The pilot system was able to operate for an extended time period (23-46 h depending on the Fe:Cr mass ratio) before turbidity breakthrough or high head loss. Backwash water was effectively settled with low doses (0.2-1.0 mg L(-1)) of high molecular weight polymer. Backwash solids were found to be nonhazardous bythe toxicity characteristic leaching procedure but hazardous by the California waste extraction test.  相似文献   

8.
Three high volume septic systems in Ontario, Canada, were examined to assess the potential for onsite wastewatertreatment systems to release pharmaceutical compounds to the environment and to evaluate the mobility of these compounds in receiving aquifers. Wastewater samples were collected from the septic tanks, and groundwater samples were collected below and down gradient of the infiltration beds and analyzed for a suite of commonly used pharmaceutical and trace organic compounds. The septic tank samples contained elevated concentrations of several pharmaceutical compounds. Ten of the 12 compounds analyzed were detected in groundwater at one or more sites at concentrations in the low ng L(-1) to low microg L(-1) range. Large differences among the sites were observed in both the number of detections and the concentrations of the pharmaceutical compounds. Of the compounds analyzed, ibuprofen, gemfibrozil, and naproxen were observed to be transported atthe highest concentrations and greatest distances from the infiltration source areas, particularly in anoxic zones of the plumes.  相似文献   

9.
The hexavalent chromium (Cr(VI)) removal capacity of acid-washed zerovalent iron (AW-Fe0) was evaluated under different groundwater geochemistry conditions through column experiments. It was found that each gram of the AW-Fe0 could remove 0.65-1.76 mg of Cr(VI) from synthetic groundwater in the absence of bicarbonate (HCO3-), magnesium and/or calcium ions. Groundwater geochemistry was found to exert various degrees of impact on Cr(VI) removal by the AW-Fe0, in which HCO3- alone gave the mildest impact whereas the copresence of calcium and HCO3- exerted the greatest impact In comparison with the unwashed Fe0, the AW-Fe0 showed a poorer Cr(VI) removal capacity and was also more susceptible to the influence of the dissolved groundwater constituents on Cr(VI) removal,thereby indicating the unsuitability of using AW-Fe0 in permeable reactive barriers for remediation of Cr(VI)-contaminated groundwater. On the AW-Fe0 surface, where the indigenous iron precipitates were almost erased, trivalent chromium including chromium (III) oxides, hydroxides, and oxyhydroxides in irregular strip, chick footmark-liked or boulder-liked forms as well as Cr(III)-Cr(VI) mixed oxides were detected.  相似文献   

10.
Chromium speciation in coal and biomass co-combustion products   总被引:1,自引:0,他引:1  
Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7-28% wood for which ashes exhibited Cr(VI) concentrations of 12-16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO(4)(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.  相似文献   

11.
Biodegradation kinetics of two phenoxy acid herbicides, MCPP [(+/-)-2-(4-chloro-2-methylphenoxy)propanoic acid; mecoprop] and 2,4-D [2,4-dichlorophenoxyacetic acid] were studied in laboratory batch microcosms at low concentrations (0.025-100 microg/L) using 14C technique with sediments and groundwater from a shallow aerobic sandy aquifer. Below a certain threshold concentration of approximately 1 microg/L for 2,4-D and 10 microg/L for MCPP, the biodegradation followed first-order nongrowth kinetics, and no adaptation was observed within the experimental period of 341 d. Half-lifes for ultimate degradation were 500 d for 2,4-D and 1100 d for MCPP at 10 degrees C in unpolluted aquifer sediment in this environmentally relevant concentration regime. Above the threshold concentrations, the biodegradation rate accelerated gradually due to selective growth of specific biomass, which was ascertained from 14C most probable number enumerations of specific phenoxy acid degraders. Atthe highest concentration tested (100 microg/ L), specific degraders increased from 10(-1) to 10(5) cells/g during the experiment, and half-lifes after adaptation decreased to approximately 5 d. The enhanced rate of degradation by adapted systems was maintained during degradation of the last residuals measured to less than 0.1 microg/L. In situ long-term preexposure of the aquifer sediment also resulted in significant higher degradation rates of the phenoxy acids.  相似文献   

12.
Profiles of groundwater and sediment properties were collected at three sites in Bangladesh with an inexpensive sampling device that is deployed by modifying the local manual drilling method. Dissolved As concentrations in the groundwater samples ranging from 5 to 600 microg/L between 5 and 50 m depth closely matched vertical profiles from nearby nests of monitoring wells. In combination with a field kit, the device provides a means of targeting aquifers for the installation of tube wells that meet the drinking water standard for As. The device is also a useful research tool for unraveling the relationships between the As content of groundwater and the complex structure of flood plain and deltaic environments throughout South Asia.  相似文献   

13.
Reduction of Cr(VI) by heating may be a useful detoxification mechanism for thermal immobilization. Using X-ray absorption spectroscopy, the change of speciation of chromium in 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin further heated at 500, 900, or 1100 degrees C was studied. The 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin sample was prepared by mixing 1.5 L of 0.257 M CrO3 solution (pH 0.71) with 0.5 kg of kaolin powder for 48 h, and then the slurry was heated (dried) at 105 degrees C until a constant weight was reached. The toxicity characteristic leaching procedure method was used to determine the percentage of leached chromium from all heated samples. In all 500-900 degrees C heated Cr(VI)-sorbed kaolin samples, Cr2O3 transformed from the hydrated Cr(VI) by a 4-h heat application was identified by the X-ray absorption near edge structure and extended X-ray absorption fine structure (EXAFS) spectroscopy as the key species that is leaching-resistant due to its low solubility. For the 1100 degrees C heated Cr(VI)-sorbed kaolin sample, the Fourier transform of its EXAFS spectrum indicates that the intensity of the peaks at 2.45 (Cr-Cr shell of Cr2O3) and 5.00 A (Cr-Cr and Cr-O shells of Cr2O3) without phase shift correction is either relatively smaller or disappearing, compared with that of the 500-900 degrees C heated Cr(VI)-sorbed kaolin samples. It is suggested that chromium octahedra were bridged to silica tetrahedra and incorporated in minerals formed at 1100 degrees C, such as mullite or sillimanite, since these phases were detected by XRD. Cr of this form is not easily leached.  相似文献   

14.
This work describes the chemical mechanisms governing transport and reduction of hexavalent chromium in soils of a contaminated industrial waste landfill. Groundwater and soil analyses indicate that the main source of chromium is a slag heap essentially consisting of mill tailings. In the groundwater, downstream migration of Cr(IV) is limited thanks to a redox mechanism involving chromate ions and ferrous ions or Fe(II)-bearing minerals. High Fe2+ concentrations in the groundwater are a result of pyrite residues from old activities at the site. Analyses of soil samples reveal that chromium is preferentially located in the soil profile at the fluctuation of the groundwater level. Grain size fractionation of four soil samples was performed, and fraction analyses show that chromium is preferentially accumulated in the clay fraction (<2 microm) and more specifically associated with montmorillonite particles. This work is a demonstration of the reduction of Cr(VI) by Fe(II) studied previously in the laboratory (Buerge, I. J.; Hug, S. J. Environ. Sci. Technol. 1997, 31, 1426-1432; Fendorf, S. E.; Li, G. Environ. Sci. Technol. 1996, 30, 1614-1617; Sedlak, D. L.; Chan, P. G. Geochim. Cosmochim. Acta 1997, 11, 2185-2192) in a field setting. Cr(VI) migration into the groundwater is stopped vertically by the very thick green clay unit and horizontally by the presence of Fe(II) acting as a chemical barrier. The specific site conditions safely prevent any extension of the Cr pollution.  相似文献   

15.
Gold nanoparticle (Au-NP) enhanced voltammetric detection of Cr(VI) is developed for determination of trace amounts of Cr(VI) in an acetate buffer media (pH 4.6). The Au-NPs were electrodeposited onto a disposable screen printed electrode (SPE) via an electrodeposition step. It was found that the electrodeposited Au-NP has strong adsorption on Cr(VI) species, which results in an enhanced reduction current of Cr(VI). Compared with the bulk gold electrode, the reduction current of Cr(VI) was enhanced 10 times with the Au-NP-modified SPE electrode. Square wave voltammetric (SWV) measurement with the disposable Au-NP-modified SPE provides a fast, simple and sensitive detection of trace amounts of Cr(VI). The adsorption of Cr(VI) on Au-NP was characterized with voltammetry, X-ray photoelectron spectroscopy and ultraviolet spectra. The different parameters including the electrodepositing time, supporting electrolyte, and pH that govern the analytical performance of the electrode have been studied in detail and optimized. The detection limit of 5 microg L(-1) Cr (VI) was obtained under optimum experimental conditions. The performance of the sensor was successfully evaluated with river water samples spiked with Cr(VI), indicating this convenient and sensitive technique offers great promise for onsite environmental monitoring and biomonitoring of Cr(VI).  相似文献   

16.
In this paper, a new recovery system of the toxic hexavalent chromium Cr(VI) is proposed that uses a lignocellulosic substrate derived from the industrial treatment process of wheat bran. We studied the adsorption mechanism of Cr(VI) onto the lignocellulosic substrate and showed that the adsorption reaction consumes a large amount of protons goes along the reduction of Cr(VI) into Cr(III). The oxidation of lignin moieties takes place concurrently to the chromium reduction and leads to the formation of hydroxyl and carboxyl functions. The latter contribute to an increase in the number of ion-exchange sites for the reduced chromium. The maximum adsorption capacity for hexavalent chromium was found at about 35 mg g(-1) in an acidic medium. This is comparable to other natural substrates and ordinary adsorbents.  相似文献   

17.
In eastern New England, high concentrations (greater than 10 microg/L) of arsenic occur in groundwater. Privately supplied drinking water from bedrock aquifers often has arsenic concentrations at levels of concern to human health, whereas drinking water from unconsolidated aquifers is least affected by arsenic contamination. Water from wells in metasedimentary bedrock units, primarily in Maine and New Hampshire, has the highest arsenic concentrations-nearly 30% of wells in these aquifers produce water with arsenic concentrations greater than 10 microg/L. Arsenic was also found at concentrations of 3-40 mg/kg in whole rock samples in these formations, suggesting a possible geologic source. Arsenic is most common in groundwater with high pH. High pH is related to groundwater age and possibly the presence of calcite in bedrock. Ion exchange in areas formerly inundated by seawater also may increase pH. Wells sampled twice during periods of 1-10 months have similar arsenic concentrations (slope = 0.89; r-squared = 0.97). On the basis of water-use information for the aquifers studied, about 103,000 people with private wells could have water supplies with arsenic at levels of concern (greater than 10 microg/L) for human health.  相似文献   

18.
The kinetics of chromate removal from contaminated water by zerovalent iron media are not well understood. This study investigated the reactions occurring on iron surfaces in chromate solutions in order to understand the removal kinetics and to assess the long-term ability of zerovalent iron for removing Cr(VI) from contaminated water. Tafel polarization analysis and electrochemical impedance spectroscopy were used to determine the corrosion rates and charge-transfer resistances associated with Cr(VI) removal by iron wires suspended in electrolyte solutions with initial Cr(VI) concentrations of 10,000 microg/L. The condition of the iron surfaces at the time of their exposure to chromate determined the effectiveness of the iron for chromate removal. Both iron coated with a water-formed oxide and initially oxide-free iron were effective for chromate removal. However, iron coated with an air-formed oxide was an order of magnitude less effective for removing soluble chromium. Although iron with the air-formed oxide was largely passivated with respect to chromate removal, its overall rate of corrosion was similar to that for iron with the other initial surface conditions. This indicates that water, but not chromate, was able to penetrate the air-formed oxide coating and access cathodic sites. For all initial surface conditions, addition of chromate decreased the corrosion rate by increasing the corrosion potential and the anodic charge transfer resistance. Although Cr(VI) is a strong oxidant rates of iron corrosion were not proportional to the aqueous Cr(VI) concentrations due to anodic control of iron corrosion. Under anodically controlled conditions, the rate of corrosion was limited by the rate at which Fe2+ could be released at anodic sites and not by the rate at which oxidants were able to accept electrons. This study shows that the zero order removal kinetics of Cr(VI) by iron media can be explained by anodic control of iron corrosion and the concomitant anodic control of Cr(VI) reduction.  相似文献   

19.
Surfactant-templated thiol-functionalized mesoporous silica adsorbents have been prepared by cocondensation of mercaptopropyltrimethoxysilane and tetraethoxysilane in the presence of cetyltrimethylammonium bromide, which were then partially oxidized to get bifunctionalized materials containing both thiol and sulfonic acid moieties (MCM-41-SH/SO3H). The resulting organic-inorganic hybrid was applied to the uptake of chromium species according to a reduction-sorption mechanism involving reduction of Cr(VI) by thiol groups and immobilization of Cr(III) onto sulfonic acid moieties. These processes were strongly affected by pH, and the optimal conditions for effective chromium sequestration resulted from a compromise between pH values low enough to ensure quantitative reduction of Cr(VI) and not too low to enable Cr(III) binding to sulfonate groups, which was best achieved at pH 2-3. The effect of the solid-to-solution ratio and the relative amounts of -SH and -SO3H groups was also discussed. Even if Cr(VI) reduction by thiol groups resulted in the formation of sulfonic acid moieties, their contentwas not high enough to ensure quantitative Cr(III) immobilization, which was only attained with materials containing already some sulfonic acid groups prior to contacting Cr(VI) solutions. Redox speciation of sulfur and chromium species was analyzed by X-ray photoelectron spectroscopy (XPS) and used to support the proposed mechanism.  相似文献   

20.
For understanding both the environmental behavior and developing remediation treatments for chromium ore processing residue (COPR) it is important to identify all the potentially soluble sources of Cr(VI). Hydrogarnet has been identified as a major phase in COPR and it has been previously speculated that it has a capacity to host Cr(VI). Here we provide direct evidence of this capacity by demonstrating the incorporation of Cr(VI) into laboratory synthesized hydrogarnet. Electron microscopy and energy dispersive X-ray microanalysis show incorporation of approximately 17000-22000 mg Cr(VI) kg(-1) hydrogarnet. X-ray powder diffraction data show that peak intensities are altered by chromium substitution and that chromium substituted hydrogarnets have a smaller unit cell than the pure Ca-Al end member. This is consistent with substitution of hydroxyl tetrahedra by smaller chromate tetrahedra. Electron energy loss spectroscopy confirms the tetrahedral coordination and hexavalent oxidation state of chromium in the hydrogarnets. The maximum amount of hexavalent chromium that can be introduced synthetically corresponds to a replacement of about one out of every eight hydroxyl tetrahedral per unit cell by a CrO4(2-) tetrahedra and tallies closely with the amount of chromium measured in hydrogarnets from COPR. Chromium-bearing hydrogarnet is the most abundant crystalline phase in millions of tons of COPR contaminating land around Glasgow, Scotland, and was recently identified in COPR from sites in North America. Calculations based on its abundance and its Cr(VI) content indicate that hydrogarnet can host as much as 50% of the Cr(VI) found in some COPR samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号