首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
张丽华  金云学  郭宇航 《铸造》2006,55(12):1251-1254
综述了近年来碳化物和硼化物两种颗粒增强钛基复合材料的高温氧化研究现状,包括氧化热力学和氧化机理的分析。氧化产物的热力学分析旨在为氧化机理的研究提供理论基础,并在此基础上指出了今后钛基复合材料氧化行为的研究重点和方向。  相似文献   

2.
TiCp颗粒增强钛基复合材料的强化机理研究   总被引:4,自引:0,他引:4  
利用SEM,TEM对TiC粒子增强的钛基复合材料的强化方式进行研究,得出:当反应界面厚度控制在0.5μm~2μm时,界面将起到良好的传递载荷的作用,使粒子承载。当粒子的粒度较小(dp〈μm),Orowan强化机制将参与材料强化,而当粒子较大时(dp〉1μm),阻碍位错滑移。由于两相之间的不均匀变形,在界面形成较高的应力集中,阻碍形变,并可产生形变位错源,使基体中位错增殖,形成位错胞,强化基体。当扩展裂纹遇到TiC粒子,使扩展路径发生偏转,增加裂纹扩展能量,提高了材料的强度。  相似文献   

3.
钛基复合材料是当前国际材料科学发展的前沿领域之一.颗粒强化钛基复合材料又因其工艺简单,制造成本低,倍受人们的青睐.然而,由于钛的活性大,几乎与所有的增强剂都发生反应,激烈的界面反应导致复合材料的性能劣化,甚至于不如基材,给钛基复合材料的研究开发造成很大的困难,使其发展非常缓慢.  相似文献   

4.
5.
TiC颗粒强化钛基复合材料的强度评估   总被引:6,自引:0,他引:6  
根据TiC颗粒强化钛基复合材料的显微组织,观察,按照复相材料的强化理论估计了TiC增加体粒子的加入对钛基体的模量强化和基体强化作用,按材料屈服准则估计了复合材料的屈服强度并同试验结果进行了比较。  相似文献   

6.
TiC颗粒强化钛基复合材料的高温拉伸特性   总被引:6,自引:2,他引:6  
用预处理熔铸工艺制备的TiC颗粒增强钛基复合材料的室温和300℃~700℃拉伸性能测量表明:复合材料相应于未复合基体合金的强度增量在温室达到24%,而到650℃降为4%,表明复合材料的显微组织有利于室温和低于650℃中的等温度强化;400℃~500℃时出现动态变时效,但延性并未明显下降,意味着PTMP工艺制成的TiC/Ti复合材料间隙元素含量低;300℃~500℃下加工硬化明显增加,可能与复合体中位错密度度增加有关。  相似文献   

7.
采用球磨工艺将碳化硅颗粒与TC11钛合金粉末混合,通过放电等离子体烧结工艺制备了碳化硅颗粒增强钛基复合材料(SiCp/TC11),并研究了复合材料的微观结构和力学性能。结果表明,SiCp/TC11复合材料内部无孔洞,烧结致密。碳化硅颗粒与钛基体发生反应,生成碳化钛颗粒。随着碳化硅颗粒含量的增加,SiCp/TC11复合材料的晶粒尺寸逐渐减小,维氏硬度升高。添加0.5%(质量分数)的碳化硅颗粒后,SiCp/TC11复合材料的室温屈服强度和抗拉强度分别提高了31.3%和14.1%,500℃高温抗拉强度提高了6.9%。SiCp/TC11复合材料强度的提高主要归因于晶粒细化、固溶强化以及载荷传递。  相似文献   

8.
机敏材料在受外部刺激时可作出相应反应 ,以补偿相应的变化或增强预想的效果。连续 Ti Ni SMA纤维增强剂可以改进材料高温下的屈服应力和断裂韧性 ,同时具有机敏材料的特性 ,属于机敏材料。用 SMA作增强剂强化机敏材料的原理是 ,埋入基体中的 SMA室温加载后由奥氏体向马氏体转变 ,加热后又发生逆转变。逆转变相变过程中 ,复合材料里的 SMA收缩 ,在 SMA内产生拉应力 ,基体内产生压应力。基体中的压应力是提高机敏材料拉伸性能的主要因素。1 复合材料的制备使用四种方法制造 SMA增强复合材料 :真空热压 ,热挤压 ,火花等离子烧结和包…  相似文献   

9.
高温钛合金和颗粒增强钛基复合材料的研究和发展   总被引:12,自引:0,他引:12  
回顾了高温钛合金的研究和发展历程,指出了现代高温钛合金进一步发展需要解决的主要难题;综述了颗料增强钛基复合材料的研究现状,按照基体的选择、增强相的选择和制备工艺3个方面,阐述了颗粒增强钛基复合材料设计中的基本任务;最后对今后的发展趋势进行了展望。  相似文献   

10.
11.
采用粉末冶金方法,通过Ti与Cr3C2反应原位生成TiC颗粒增强钛基复合材料。利用X射线衍射(XRD)、透射电镜(TEM)等手段对其相组成和显微组织进行了研究。结果表明:通过Ti与Cr3C2反应能够原位生成TiC颗粒,生成的TiC颗粒呈多角状,粒度在几十纳米到50μm范围内;Cr3C2中的Cr固溶在Ti基体中,使基体由α+β两相合金转变成为亚稳态β型钛合金。  相似文献   

12.
钛基复合材料的高周疲劳性能研究   总被引:2,自引:0,他引:2  
研究了TiC粒子增强的钛基复合材料的室温轴向高周疲劳性能。测试Kt=1的试样时采用的试验频率为76Hz,R=0.06和R=-1时,复合材料的室温疲劳强度分别为594MPa和494MPa。试验结果表明TiC粒子增强的钛基复合材料的室温高周疲劳性能与细晶组织的Ti-6Al-4V和IMI834的相当。复合材料内含有较细小的薄片状组织,这种组织为α β相互相交错构成,这种细小的α β相间的层状组织对于阻止疲劳裂纹的扩展和提高疲劳裂纹的扩展寿命有重要作用。退火后的复合材料疲劳裂纹扩展区规则且较宽广,从而也使复合材料具有较高的疲劳强度,疲劳裂纹扩展寿命延长。  相似文献   

13.
采用液相烧结法(LPS)制备了TiC/Ti复合材料,借助X射线衍射(XRD)分析了复合材料的相构成。对TiCFFi复合材料进行了高温压缩和高温挤压实验,利用扫描电镜(SEM)和光学显微镜(OM)分析了复合材料高温变形前后的微观组织。实验结果表明:基体Ti与烧结助剂中的Cu发生反应生成玻璃相TiCu2。在高温塑性变形过程中,由于液相TiCu2的存在,使复合材料表现出良好的高温塑性变形能力,压缩率达到72.9%,挤压比为16:1:复合材料高温塑性变形后,材料中的孔洞明显减少,致密度得到提高,组织成分保持稳定:处于液相状态的TiCu2高温挤压后,细化成尺寸为1μm~2μm的小颗粒,均匀分布于基体Ti颗粒的周围。  相似文献   

14.
以钛和石墨为原料,采用预置粉末结合高频感应加热熔化的方法在Ti6Al4V基体表面制备了原位自生TiC增强Ti基复合涂层,研究了涂层微观结构、物相构成、纳米力学性能及显微硬度。结果表明,感应熔覆钛基复合涂层表面平整,内部无裂纹和孔隙,与基体形成了冶金结合;熔覆过程中Ti与石墨充分反应生成TiC增强相,涂层基质相由α-Ti和少量β-Ti构成;TiC在涂层内分布均匀,其纳米压痕硬度和弹性模量高达22和280 GPa,较Ti6Al4V基体分别提高18和130 GPa,因此使复合涂层具有较高的硬度。  相似文献   

15.
Al3Ti/ZL101原位复合材料中增强相Al3Ti结构及强化机理   总被引:2,自引:3,他引:2  
采用透射电镜对Al3Ti/ZL101原位复合材料中亚微米增强相Al3Ti的形貌,结构和分布进行了研究,测试了Al3Ti/ZL101原位复合材料的力学性能。研究结果表明,Al3Ti/ZL101原位复合材料中增强相Al3Ti的尺寸为0.3-0.5μm,该增强相与α-Al基体具有共格对应关系,它均匀分布于α-Al基体中并可作为异质晶核细化基体晶粒。  相似文献   

16.
研究了(TiB+TiC)/Ti6242基复合材料在550℃,600℃和650℃空气中恒温氧化行为。用X射线衍射仪(XRD)和配有能谱仪(EDS)的扫描电子显微镜(SEM)对氧化层表面的相组成、形貌以及氧化层剖面的显微结构进行了分析,并分析了各元素对钛基复合材料氧化动力学行为的影响。结果表明:(TiB+TiC)/Ti6242基复合材料的氧化层由一系列薄层组成:增强体TiB提高抗氧化性优于TiC,加工可以提高其抗氧化性;氧化动力学曲线主要为抛物线类型。  相似文献   

17.
在Gleeble-1500热模拟试验机上进行热压缩试验,研究了变形温度为900~1150 ℃,应变速率为0.001~10 s-1的TiC颗粒增强钛基复合材料的热变形行为.根据所得应力应变曲线分析了该合金的热变形特征,计算了α+β区域的平均变形激活能为799 kJ/mol,β区域平均变形激活能为105 kJ/mol.并根据动力学模型建立了加工图,分析了加工图中的高功率耗散区和流变失稳区,确定了不同区域的变形机制.观察了变形后的显微组织.结果表明:在温度范围为900~980 ℃,应变速率范围为0.001~0.1 s-1的低应变速率区域发生了超塑性和动态再结晶;在温度范围为1000~1100 ℃,应变速率范围为0.1~10 s-1的高应变速率区域变形机制主要是由亚晶界迁移扩散控制的动态再结晶.两个流变失稳区分别发生在温度为900~950℃,应变速率为0.1~10 s-1的区域和温度为1080~1130 ℃,应变速率为0.001~0.01 s-1区域.  相似文献   

18.
原位自生TiC颗粒增强金属基复合材料涂层的组织与性能   总被引:5,自引:2,他引:5  
以Ni60A、Ti粉和C粉为原料,采用高频感应熔覆技术。在16Mn钢表面原位合成了TiC颗粒增强镍基复合材料涂层。借助扫描电镜、透射电镜、X射线衍射仪、显微硬度计对复合涂层的组织、结构和性能进行了分析。结果表明,熔覆层与基体呈冶金结合,无裂纹、气孔等缺陷;熔覆层组织由γ-Ni、M23C3、TiC组成,TiC大部分呈方块状,少部分呈花瓣状,颗粒尺寸为0.5-1.0μm,均弥散分布于熔覆层中,涂层的显微硬度可达980-1000HV0.2。  相似文献   

19.
采用TiC颗粒和熔铸法制备TiCp/TIMETAL62S复合材料,研究了钛基复合材料的显微组织和室温力学性能。结果表明:TiCp/TIMETAL62S复合材料的组织由针状αa相、少量β相和TiC颗粒组成;TiC颗粒改变了基体合金原有组织,促进了复合材料组织的细化;钛基复合材料具有良好的室温强度和塑性,复合效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号