共查询到18条相似文献,搜索用时 93 毫秒
1.
基于奇异值分解和支持向量机的人脸检测 总被引:3,自引:0,他引:3
人脸检测在自动人脸鉴别工作中具有重要的意义。由于人脸图像特征的复杂性和多样性,使得人脸模式分类器的训练十分困难。本文提出了一种基于支持向量机(SVM)的人脸检测算法,使用了奇异值分解对训练样本进行特征提取,再由SVM分类器进行分类,有效的降低了训练难度,采用二阶多项式作为SVM分类器的核函数,实验结果表明,该方法是十分有效的。 相似文献
2.
人脸检测作为人脸识别系统的重要一环,越来越受到技术研究和商业应用的关注。针对人脸检测环境的复杂性,该文提出了基于肤色和支持向量机的人脸检测算法。该算法对于具有复杂背景信息的人脸彩色图像,采用肤色检测的方法进行肤色区域的分割并去除噪声干扰,然后使用支持向量机(SVM)对于类似肤色区域进一步检测并确定人脸区域。实验表明,结合肤色模型的快速检测和支持向量机的二次验证,该方法能提高人脸检测的准确性,并缩短检测时间。 相似文献
3.
4.
针对目前人脸检测方法速度与精度难以兼有的问题,本文提出了一种结合高斯模型和支持向量机的人脸检测方法.先利用皮肤颜色在YCbCr空间的聚类性,对肤色建立高斯模型以分割出可能的人脸区域,再将这些区域输入到支持向量机检测并标记出检测结果.实验结果证明,本文提出的方法检测效果令人满意. 相似文献
5.
6.
提出一种基于支持向量机的快速人脸检测算法,适用于复杂背景灰度图像的人脸检测。算法首先用双眼模板匹配方法进行粗筛选,之后对候选窗口用小波变换提取特征,将特征向量送入支持向量机进行分类检测。由于采用双眼模板进行粗筛选提高了检测速度,并且用小波变换提取特征向量,使特征向量的维数大大减少,从而有效地降低了分类器的训练难度。实验对比数据表明该方法具有较高的检测率和较低的虚警数,检测速度较高。 相似文献
7.
基于小波变换和支持向量机的人脸检测 总被引:2,自引:0,他引:2
提出一种新的人脸检测方法——基于小波变换和支持向量机的方法。其方法的新颖之处体现在:通过综合原输人图像的小波变换值、灰度值的投影来进行特征分析;运用统计模型来估计类条件概率密度函数;运用最优的分类方法——贝叶斯分类器进行判决分类。人脸类采用正态分布建模,而非人脸类(包括除人脸类之外的一切事物)仍用正态分布来建模是不合理的。但可以用支持向量机方法从非人脸类中抽出一些跟人脸类很接近的非人脸类的特殊子集,然后对这特殊子集用正态分布进行建模。 相似文献
8.
9.
10.
基于Gabor滤波特征和支持向量机的人脸检测 总被引:1,自引:0,他引:1
人脸检测是人脸识别与图像及视频检索的一项重要任务。论文提出了一种基于Gabor滤波特征和支持向量机的正面人脸检测方法。算法首先利用了Gabor滤波器的良好的空间位置与方向的选择特性,采用了四种方向的Gabor滤波器提取人脸样本图像特征并用PCA方法对特征降维,然后用已降维的特征训练支持向量机分类器。最后应用SVM分类检测人脸。实验结果证明该方法行是十分有效的。 相似文献
11.
提出了一种基于整体与局部奇异值分解相结合的人脸识别算法。文章叙述了人脸图像的预处理、奇异值分解以及支持向量机的原理及实现过程。运用整体与局部奇异值分解,分别获得图像的整体与局部特征,然后采用支持向量机进行分类识别,实验验证了该方法的有效性。 相似文献
12.
考虑到人脸识别的非线性和小样本的特点,利用小波变换对人脸图像进行预处理,保留图像的低频段,有效地降低了图像维数并去除冗余噪声.采用奇异值分解的方法提取特征,然后利用支持向量机的方法设计人脸分类器,最后利用ORL人脸数据库进行验证,实验结果证明了该方法的有效性. 相似文献
13.
基于新的肤色模型的人脸检测方法 总被引:2,自引:0,他引:2
基于灰度信息的人脸检测方法在转换过程中会损失原图像中部分有用信息。通过对肤色在YCbCr色彩空间分布的统计分析,提出一种在彩色域中建立肤色模型的方法,并建立了较为准确的肤色模型。在此基础上,根据人脸几何结构特征进一步识别人脸。利用芬兰奥卢大学的基于物理学人脸数据库等一些图像数据检验方法的性能,实验结果表明该方法在较大的光照变化条件下均具有较好的检测率。 相似文献
14.
基于奇异值特征提取的彩色人脸识别* 总被引:2,自引:0,他引:2
基于彩色图像的四元数模型,将彩色人脸图像视为一个模板直接处理,并首次将奇异值向量应用到彩色人脸识别中.首先证明了彩色图像的奇异值向量具有代数和几何不变性;然后将其提取为图像的代数特征并应用到人脸识别中.实验表明该方法的识别率为90%左右,是一种有效的彩色人脸识别方法. 相似文献
15.
基于人脸特征和AdaBoost算法的多姿态人脸检测 总被引:2,自引:0,他引:2
基于人脸特征和AdaBoost算法,提出一种改进的多姿态人脸检测算法。首先利用肤色特征快速排除绝大部分背景区域,然后在肤色区域中搜索眼睛和嘴巴区域,根据眼睛和嘴巴区域的几何特征所确定的人脸方向分割出大致正向的人脸候选区域,最后利用AdaBoost算法对候选区域进行分类。实验表明,算法能实现多姿态人脸的快速检测,而且对脸部表情和遮挡有较强的鲁棒性。 相似文献
16.
针对单一特征在人脸检测方面的不足,提出了一种基于多特征提取的人脸检测算法。利用肤色信息分割出候选人脸区域,并对其进行小波分析,降低维数。进行离散余弦变换,取出部分系数作为频率域特征。对变换后的重构图像利用奇异值分解和局部二值模式提取代数特征和纹理特征,将这三方面特征融合成新的特征向量。这样既降低了维数,又综合了三方面的特征优势,保证了利用支持向量机分类,定位人脸的效果。实验结果表明,该方法具有较高的检测率,且鲁棒性较好。 相似文献
17.
针对视频中的彩色序列图像,提出了一种人脸检测算法。该算法是一个由粗到精的检测过程。首先采用运动检测分析方法,根据多帧差分图像中运动物体边缘点的水平投影确定目标的水平位置,并结合肤色检测算法进一步确定人脸位置,然后用训练好的支持向量机进行人脸验证。实验结果表明,针对一般的彩色序列图像任意姿态人脸检测问题,该算法快速有效。 相似文献