首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cubic delta-tantalum nitride (δ-TaN) nanoparticles were selectively prepared using a K2TaF7 + (5 + k) NaN3 + kNH4F reactive mixture (k being the number of moles of NH4F) via a combustion process under a nitrogen pressure of 2.0 MPa. The combustion temperature, when plotted as a function of the number of moles of NH4F used, was in the range of 850°C to 1,170°C. X-ray diffraction patterns revealed the formation of cubic δ-TaN nanoparticles at 850°C to 950°C when NH4F is used in an amount of 2.0 mol (or greater) in the combustion experiment. Phase pure cubic δ-TaN synthesized at k = 4 exhibited a specific surface area of 30.59 m2/g and grain size of 5 to 10 nm, as estimated from the transmission electron microscopy micrograph. The role of NH4F in the formation process of δ-TaN is discussed with regard to a hypothetical reaction mechanism.  相似文献   

2.
Ni0.5Zn0.5Fe2O4 nanoparticles were synthesized by the facile citrate-gel process and the preliminary measurement for adsorption of bovine serum albumin (BSA) protein on these nanoparticles was carried out. The gel precursor and resultant nanoparticles were characterized by TG-DSC, FTIR, XRD, TEM and VSM techniques and the BSA adsorption on the nanoparticles was analyzed by UV spectrophotometer at room temperature. The results show that the single phase of spinel Ni0.5Zn0.5Fe2O4 is formed at 400 °C. With increasing calcination temperature from 400 to 700 °C, the average grain size increases from about 14 to 45 nm and consequently, the specific saturation magnetization of Ni0.5Zn0.5Fe2O4 nanoparticles increases from about 46 to 68 Am2/kg. The coercivity initially increases and then decreases with increasing calcination temperature, with a maximum value 9.2 kA/m at 500 °C. The as-prepared Ni0.5Zn0.5Fe2O4 nanoparticles exhibit a good adsorbing ability for BSA and the optimized adsorption is achieved for the Ni0.5Zn0.5Fe2O4 nanoparticles calcined at 500 °C with grain size about 24 nm.  相似文献   

3.
β-Nb2ZnO6 nanoparticles were synthesized by a hydrothermal process and calcined at two temperatures, 500 °C and 700 °C, and assigned as A and B, respectively. X-ray diffraction, together with transmission electron microscopy, revealed that the β-Nb2ZnO6 nanoparticles calcined at 700 °C (B) were more crystalline than the β-Nb2ZnO6 calcined at 500 °C (A) with both types of nanoparticles having an average size of approximately 100 nm. The physiochemical, photocatalytic, and cytotoxic activities of both types of β-Nb2ZnO6 nanoparticles (A and B) were examined. Interestingly, the photodegradation of methyl orange, used as a standard for environmental pollutants, was faster in the presence of the β-Nb2ZnO6 nanoparticles calcined at 500 °C (A) than in the presence of those calcined at 700 °C (B). Moreover, the cytotoxicity was evaluated against different types of cancer cells and the results indicated that both types of β-Nb2ZnO6 nanoparticles (A and B) exhibited high cytotoxicity against MCF-7 and HCT116 cells but low cytotoxicity against HeLa cells after 24 and 48 h of treatment. Overall, both products expressed similar EC50 values on tested cell lines and high cytotoxicity after 72 h of treatment. As a photocatalyst, β-Nb2ZnO6 nanoparticles (A) could be utilized in different applications including the purification of the environment and water from specific pollutants. Further biological studies are required to determine the other potential impacts of utilizing β-Nb2ZnO6 nanoparticles in the biomedical application field.  相似文献   

4.
The microwave-assisted nanocomposite synthesis of metal nanoparticles on graphene or graphite oxide was introduced in this research. With microwave assistance, the Pt nanoparticles on graphene/graphite oxide were successfully produced in the ionic liquid of 2-hydroxyethanaminium formate [HOCH2CH2NH3][HCO2]. On graphene/graphite oxide, the sizes of Pt nanoparticles were about 5 to 30 nm from transmitted electron microscopy (TEM) results. The crystalline Pt structures were examined by X-ray diffraction (XRD). Since hydrogenation of styrene is one of the important well-known chemical reactions, herein, we demonstrated then the catalytic hydrogenation capability of the Pt nanoparticles on graphene/graphite oxide for the nanocomposite to compare with that of the commercial catalysts (Pt/C and Pd/C, 10 wt.% metal catalysts on activated carbon from Strem chemicals, Inc.). The conversions with the Pt nanoparticles on graphene are >99% from styrene to ethyl benzene at 100°C and under 140 psi H2 atmosphere. However, ethyl cyclohexane could be found as a side product at 100°C and under 1,520 psi H2 atmosphere utilizing the same nanocomposite catalyst.  相似文献   

5.
The structural, morphological and magnetic properties of MFe2O4 (M = Co, Ni, Zn, Cu, Mn) type ferrites produced by thermal decomposition at 700 and 1000 °C were studied. The thermal analysis revealed that the ferrites are formed at up to 350 °C. After heat treatment at 1000 °C, single-phase ferrite nanoparticles were attained, while after heat treatment at 700 °C, the CoFe2O4 was accompanied by Co3O4 and the MnFe2O4 by α-Fe2O3. The particle size of the spherical shape in the nanoscale region was confirmed by transmission electron microscopy. The specific surface area below 0.5 m2/g suggested a non–porous structure with particle agglomeration that limits nitrogen absorption. By heat treatment at 1000 °C, superparamagnetic CoFe2O4 nanoparticles and paramagnetic NiFe2O4, MnFe2O4, CuFe2O4 and ZnFe2O4 nanoparticles were obtained.  相似文献   

6.
Highly ordered TiO2 nanotube array (TN) films were prepared by anodization of titanium foil in a mixed electrolyte solution of glycerin and NH4F and then annealed at 200°C, 400°C, 600°C, and 800°C, respectively. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), water contact angle (WCA), and photoluminescence (PL). It was found that low temperature (below 600°C) has no significant influence on surface morphology, but the diameter of the nanotube increases from 40 to 50 nm with increasing temperature. At 800°C, the nanotube arrays are completely destroyed and only dense rutile film is observed. Samples unannealed and annealed at 200°C are amorphous. At 400°C, anatase phase appears. At 600°C, rutile phase appears. At 800°C, anatase phase changes into rutile phase completely. The wettability of the TN films shows that the WCAs for all samples freshly annealed at different temperatures are about 0°. After the annealed samples have been stored in air for 1 month, the WCAs increase to 130°, 133°, 135°, 141°, and 77°, respectively. Upon ultraviolet (UV) irradiation, they exhibit a significant transition from hydrophobicity to hydrophilicity. Especially, samples unannealed and annealed at 400°C show high photoinduced hydrophilicity.  相似文献   

7.
La1 − x Al x FeO3 (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) nanopowders were prepared by polymerization complex method. All prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectrophotometry (UV-vis). The magnetic properties were investigated using a vibrating sample magnetometer (VSM). The X-ray results of all samples show the formation of an orthorhombic phase with the second phase of α-Fe2O3 in doped samples. The crystallite sizes of nanoparticles decreased with increasing Al content, and they are found to be in the range of 58.45 ± 5.90 to 15.58 ± 4.64 nm. SEM and TEM images show the agglomeration of nanoparticles with average particle size in the range of 60 to 75 nm. The FT-IR spectra confirm the presence of metal oxygen bonds of O-Fe-O and Fe-O in the FeO6 octahedra. The UV-vis spectra show strong absorption peaks at approximately 285 nm, and the calculated optical band gaps are found to be in the range of 2.05 to 2.09 eV with increasing Al content. The M-H loop of the pure sample is antiferromagnetic, whereas those of the doped samples tend to be ferromagnetic with increasing Al content. The magnetization, remanent magnetization, and coercive field of the Al-doped sample with x = 0.5 are enhanced to 1.665 emu/g, 0.623 emu/g, and 4,087.0 Oe, respectively.  相似文献   

8.
The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure.  相似文献   

9.
In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs) on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B) was investigated. For this purpose, non-functionalized (KIT-6) and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6]) nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles. It was observed that the amount of adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and [n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was immobilized upon raising the temperature of the medium from 4 to 55 °C while such increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials decreased significantly. By Differential scanning calorimetry or DSC analysis the heterogeneity of the protein solution and increase in Tm may indicate that immobilization of BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified one. The obtained results provide several crucial factors in determining the mechanism(s) of protein adsorption and stability on the nanostructured solid supports and the development of engineered nano-biomaterials for controlled drug-delivery systems and biomimetic interfaces for the immobilization of living cells.  相似文献   

10.
In this work, cobalt silicide nanowires were synthesized by chemical vapor deposition processes on Si (100) substrates with anhydrous cobalt chloride (CoCl2) as precursors. Processing parameters, including the temperature of Si (100) substrates, the gas flow rate, and the pressure of reactions were varied and studied; additionally, the physical properties of the cobalt silicide nanowires were measured. It was found that single-crystal CoSi nanowires were grown at 850°C ~ 880°C and at a lower gas flow rate, while single-crystal Co2Si nanowires were grown at 880°C ~ 900°C. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with field emission measurements demonstrates that CoSi nanowires are attractive choices for future applications in field emitters.  相似文献   

11.
Ferrite nanoparticles of basic composition Ni0.7-xZnxCu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands (v1 and v2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters (ε'', ε″, tanδ, and σac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume.PACS: 75.50.Gg; 78.20; 77.22.Gm.  相似文献   

12.
TiN thin films were deposited on MgO (100) substrates at different substrate temperatures using rf sputtering with Ar/N2 ratio of about 10. At 700°C, the growth rate of TiN was approximately 0.05 μm/h. The structural and electrical properties of TiN thin films were characterized with x-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Hall measurements. For all deposition conditions, XRD results show that the TiN films can be in an epitaxy with MgO with cube-on-cube orientation relationship of (001)TiN // (001)MgO and [100]TiN // [100]MgO. TEM with selected-area electron diffraction pattern verifies the epitaxial growth of the TiN films on MgO. SEM and AFM show that the surface of the TiN film is very smooth with roughness approximately 0.26 nm. The minimum resistivity of the films can be as low as 45 μΩ cm.  相似文献   

13.
The effect of the modification of the polyvinyl alcohol (PVA) selective layer of thin film composite (TFC) membranes by aluminosilicate (Al2O3·SiO2) nanoparticles on the structure and pervaporation performance was studied. For the first time, PVA-Al2O3·SiO2/polyacrylonitrile (PAN) thin film nanocomposite (TFN) membranes for pervaporation separation of ethanol/water mixture were developed via the formation of the selective layer in dynamic mode. Selective layers of PVA/PAN and PVA-Al2O3·SiO2/PAN membranes were formed via filtration of PVA aqueous solutions or PVA-Al2O3·SiO2 aqueous dispersions through the ultrafiltration PAN membrane for 10 min at 0.3 MPa in dead-end mode. Average particle size and zeta potential of aluminosilicate nanoparticles in PVA aqueous solution were analyzed using the dynamic light scattering technique. Structure and surface properties of membranes were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. Membrane performance was investigated in pervaporation dehydration of ethanol/water mixtures in the broad concentration range. It was found that flux of TFN membranes decreased with addition of Al2O3·SiO2 nanoparticles into the selective layer due to the increase in selective layer thickness. However, ethanol/water separation factor of TFN membranes was found to be significantly higher compared to the reference TFC membrane in the whole range of studied ethanol/water feed mixtures with different concentrations, which is attributed to the increase in membrane hydrophilicity. It was found that developed PVA-Al2O3·SiO2/PAN TFN membranes were more stable in the dehydration of ethanol in the whole range of investigated concentrations as well as at different temperatures of the feed mixtures (25 °C, 35 °C, 50 °C) compared to the reference membrane which is due to the additional cross-linking of the selective layer by formation hydrogen and donor-acceptor bonds between aluminosilicate nanoparticles and PVA macromolecules.  相似文献   

14.
We have developed a low-cost technique using a conventional microwave oven to grow layered basic zinc acetate (LBZA) nanosheets (NSs) from a zinc acetate, zinc nitrate and HMTA solution in only 2 min. The as-grown crystals and their pyrolytic decomposition into ZnO nanocrystalline NSs are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD) and photoluminescence (PL). SEM and AFM measurements show that the LBZA NSs have typical lateral dimensions of 1 to 5 μm and thickness of 20 to 100 nm. Annealing in air from 200°C to 1,000°C results in the formation of ZnO nanocrystalline NSs, with a nanocrystallite size ranging from 16 nm at 200°C to 104 nm at 1,000°C, as determined by SEM. SEM shows evidence of sintering at 600°C. PL shows that the shape of the visible band is greatly affected by the annealing temperature and that the exciton band to defect band intensity ratio is maximum at 400°C and decreases by a factor of 15 after annealing at 600°C. The shape and thickness of the ZnO nanocrystalline NSs are the same as LBZA NSs. This structure provides a high surface-to-volume ratio of interconnected nanoparticles that is favorable for applications requiring high specific area and low resistivity such as gas sensing and dye-sensitized solar cells (DSCs). We show that resistive gas sensors fabricated with the ZnO NSs showed a response of 1.12 and 1.65 to 12.5 ppm and 200 ppm of CO at 350°C in dry air, respectively, and that DSCs also fabricated from the material had an overall efficiency of 1.3%.

PACS

81.07.-b; 62.23.Kn; 61.82.Fk  相似文献   

15.
Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.  相似文献   

16.
We here report a simple and efficient method to grow single-layer bismuth nanoparticles (BiNPs) with various sizes on glass substrates. Optimal conditions were found to be 200°C and 0.12 W/cm2 at a growth rate of 6 Å/s, with the deposition time around 40 s. Scanning electron microscope (SEM) images were used to calculate the particle size distribution statistics, and high-resolution X-ray diffraction (XRD) patterns were used to examine the chemical interactions between BiNPs and the substrates. By measuring the transmission spectra within the range of 300 to 1,000 nm, we found that the optical bandgap can be modulated from 0.45 to 2.63 eV by controlling the size of these BiNPs. These interesting discoveries offer an insight to explore the dynamic nature of nanoparticles.  相似文献   

17.
We are reporting on the impact of air annealing temperatures on the physicochemical properties of electrochemically synthesized cadmium selenium telluride (CdSe0.6Te0.4) samples for their application in a photoelectrochemical (PEC) solar cell. The CdSe0.6Te0.4 samples were characterized with several sophisticated techniques to understand their characteristic properties. The XRD results presented the pure phase formation of the ternary CdSe0.6Te0.4 nanocompound with a hexagonal crystal structure, indicating that the annealing temperature influences the XRD peak intensity. The XPS study confirmed the existence of Cd, Se, and Te elements, indicating the formation of ternary CdSe0.6Te0.4 compounds. The FE-SEM results showed that the morphological engineering of the CdSe0.6Te0.4 samples can be achieved simply by changing the annealing temperatures from 300 to 400 °C with intervals of 50 °C. The efficiencies (ƞ) of the CdSe0.6Te0.4 photoelectrodes were found to be 2.0% for the non-annealed and 3.1, 3.6, and 2.5% for the annealed at 300, 350, and 400 °C, respectively. Most interestingly, the PEC cell analysis indicated that the annealing temperatures played an important role in boosting the performance of the photoelectrochemical properties of the solar cells.  相似文献   

18.
The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications.  相似文献   

19.
In this work, a new poly (3-hexylthiophene):1.00 mol% Au-loaded zinc oxide nanoparticles (P3HT:Au/ZnO NPs) hybrid sensor is developed and systematically studied for ammonia sensing applications. The 1.00 mol% Au/ZnO NPs were synthesized by a one-step flame spray pyrolysis (FSP) process and mixed with P3HT at different mixing ratios (1:1, 2:1, 3:1, 4:1, and 1:2) before drop casting on an Al2O3 substrate with interdigitated gold electrodes to form thick film sensors. Particle characterizations by X-ray diffraction (XRD), nitrogen adsorption analysis, and high-resolution transmission electron microscopy (HR-TEM) showed highly crystalline ZnO nanoparticles (5 to 15 nm) loaded with ultrafine Au nanoparticles (1 to 2 nm). Film characterizations by XRD, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, and atomic force microscopy (AFM) revealed the presence of P3HT/ZnO mixed phases and porous nanoparticle structures in the composite thick film. The gas sensing properties of P3HT:1.00 mol% Au/ZnO NPs composite sensors were studied for reducing and oxidizing gases (NH3, C2H5OH, CO, H2S, NO2, and H2O) at room temperature. It was found that the composite film with 4:1 of P3HT:1.00 mol% Au/ZnO NPs exhibited the best NH3 sensing performances with high response (approximately 32 to 1,000 ppm of NH3), fast response time (4.2 s), and high selectivity at room temperature. Plausible mechanisms explaining the enhanced NH3 response by composite films were discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号