首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The corrosion resistance to calcium-magnesium-alumino-silicates (CMAS) is critically important for the thermal barrier coatings (TBCs). High-entropy zirconate (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (HEZ) ceramics with low thermal conductivity, high coefficient of thermal expansion and good durability to thermal shock is expected to be a good candidate for the next-generation TBCs. In this work, the CMAS corrosion of HEZ at 1300°C was firstly investigated and compared with the well-studied La2Zr2O7 (LZ). It is found that the HEZ ceramics showed a graceful behavior to CMAS corrosion, obviously much better than the LZ ceramics. The HEZ suffered from CMAS corrosion only through dissolution and re-precipitation, while additional grain boundary corrosion existed in the LZ system. The precipitated high-entropy apatite showed fine-grained structure, resulting in a reaction layer without cracks. This study reveals that HEZ is a promising candidate for TBCs with extreme resistance to CMAS corrosion.  相似文献   

2.
《Ceramics International》2023,49(12):20034-20040
In order to reveal the effect of Sc2O3 and Y2O3 co-doping system on the thermal shock resistance of ZrO2 thermal barrier coatings, Y2O3 stabilized ZrO2 thermal barrier coatings (YSZ TBCs) and Sc2O3–Y2O3 co-stabilized ZrO2 thermal barrier coatings (ScYSZ TBCs) were prepared by atmospheric plasma spraying technology. The surface and cross-section micromorphologies of YSZ ceramic coating and ScYSZ ceramic coatings were compared, and their phase composition before and after heat treatment at 1200 °C was analyzed. Whereupon, the thermal shock experiment of the two TBCs at 1100 °C was carried out. The results show that the micromorphologies of YSZ ceramic coating and ScYSZ ceramic coating were not much different, but the porosity of the latter was slightly higher. Before heat treatment, the phase composition of both YSZ ceramic coating and ScYSZ ceramic coating was a single T′ phase. After heat treatment, the phase composition of YSZ ceramic coating was a mixture of M phase, T phase, and C phase, while that of ScYSZ ceramic coating was still a single T′ phase, indicating ScYSZ ceramic coating had better T′ phase stability, which could be attributed to the co-doping system of Sc2O3 and Y2O3 facilitated the formation of defect clusters. In the thermal shock experiment, the thermal shock life of YSZ TBCs was 310 times, while that of ScYSZ TBCs was 370 times, indicating the latter had better thermal shock resistance. The difference in thermal shock resistance could be attributed to the different sintering resistance of ceramic coatings and the different growth rates of thermally grown oxide in the two TBCs. Furthermore, the thermal shock failure modes of YSZ TBCs and ScYSZ TBCs were different, the former was delamination, while the latter was delamination and shallow spallation.  相似文献   

3.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

4.
《Ceramics International》2015,41(8):9972-9979
Double-layer thermal barrier coatings (TBCs), including a top ZrO2 layer and an inner CoNiCrAlY layer, were deposited on nickel-based superalloy using supersonic atmospheric plasma spraying (SAPS). Thermal shock resistance of the TBCs between 1200 °C and room temperature was investigated. After thermal shock test, the adhesive strength of the coatings was evaluated through scratch test. The SAPS–TBCs present good thermal shock resistance, exhibiting only 0.26% mass gain up to 150-time thermal cycling. Before thermal cyclic treatment, SAPS–TBCs exhibited a strong adhesion with the absence of the thermally grown oxide (TGO) between out and inner layer. With the increasing of thermal cycles, the TGO layer was formed and its thickness firstly increased and then dropped down. The critical load fell down by about 32% for topcoat–bondcoat adhesion (up to 50 cycles) and 35% or so for TBCs–substrate adhesion (up to 150 cycles) compared to the counterpart of as-sprayed specimens. The strain introduced by the existence of TGO and mixed oxides resulted in a varied adhesion for TBCs on nickel-based alloy during thermal cycling.  相似文献   

5.
《Ceramics International》2022,48(17):24402-24410
Zr6Ta2O17 has higher fracture toughness, better phase stability, thermal insulation performance and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (8 YSZ, 7–8 wt%) at temperatures above 1200 °C. However, the thermal expansion coefficients between Zr6Ta2O17 coating and bond coating do not match well. A double-ceramic-layer design is applied to alleviate the thermal stress mismatch. The Zr6Ta2O17/8 YSZ double-ceramic-layer thermal barrier coatings (TBCs) are prepared by atmospheric plasma spraying (APS). During the thermal shock test, Zr6Ta2O17/8 YSZ double-ceramic-layer TBCs exhibit a better thermal shock resistance than 8 YSZ and Zr6Ta2O17 single-layer TBCs. The thermal shock performance and failure mechanism of TBCs in the thermal shock test are investigated and discussed in detail.  相似文献   

6.
Atmospheric plasma-sprayed (APS) coatings have a layered structure as well as lower strain tolerance and a shorter lifetime than EB-PVD coatings. In this study, TBCs composed of a LaMgAl11O19 (LMA) top coat and a NiCrAlY bond coat were prepared by APS coupled with dry-ice blasting to implant vertical microcracks in the top coat. The thermal cycling lifetime and CMAS corrosion behaviour of LMA-TBCs with pre-implanted vertical microcracks were investigated in detail. The results show that the LMA top coat possesses an improved proportion of vertical microcracks and that the corresponding TBC has an improved thermal cycling lifetime. The vertical microcracks in the top coats, which not only reduce the thermal stress but also improve the strain tolerance of TBCs, dramatically contribute to the improvement in the thermal cycling lifetime. Surprisingly, the CMAS corrosion resistance of LMA-type TBCs with implanted vertical microcracks is better than that of conventional TBCs with a typical layered structure.  相似文献   

7.
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed.  相似文献   

8.
Nanostructured GdPO4 thermal barrier coatings (TBCs) were prepared by air plasma spraying, and their phase structure evolution and microstructure variation due to calcium–magnesium–alumina–silicate (CMAS) attack have been investigated. The chemical composition of the coating is close to that of the agglomerated particles used for thermal spraying. Nanozones with porous structure are embedded in the coating microstructure, with a percentage of ~30%. CMAS corrosion tests indicated that nanostructured GdPO4 coating is highly resistant to penetration by molten CMAS at 1250°C. Within 1 hour heat treatment duration, a continuous dense reaction layer forms on the coating surface, which are composed of P–Si apatite based on Ca2+xGd8?x(PO4)x(SiO4)6?xO2, anorthite and spinel phases. This layer provides effective prevention against CMAS further infiltration into the coating. Prolonged heat treatment densifies the reaction layer but does not change its phase composition.  相似文献   

9.
《Ceramics International》2019,45(16):19710-19719
Because gas turbine engines must operate under increasingly harsh conditions, the degradation of thermal barrier coatings (TBCs) by calcium-magnesium-alumina-silicate (CMAS) is becoming an urgent issue. Mullite (3Al2O3·2SiO2) is considered a potential material for CMAS resistance; however, the performance of mullite in the presence of CMAS is still unclear. In this study, mullite and Al2O3–SiO2 were premixed with yttria stabilized zirconia (YSZ) in different proportions, respectively. Porous ceramic pellets were used to conduct CMAS hot corrosion tests, and the penetration of molten CMAS and its mechanism were investigated. The thermal and mechanical properties of the samples were also characterized. It was found that the introduction of mullite and Al2O3–SiO2 mitigated the penetration of molten CMAS into the pellets owing to the formation of anorthite, especially at 45 wt% mullite/55 wt% YSZ. Compared with Al2O3–SiO2, mullite possesses a higher chemical activity and undergoes a faster reaction with CMAS, thus forming a sealing layer in a short time. Additionally, the thermal expansion coefficient, thermal conductivity, and fracture toughness of different samples were considered to guide the architectural design. Considering the CMAS corrosion resistance, thermal and mechanical performance of TBCs systematically, a TBC system with a multilayer architecture is proposed to provide a theoretical and practical basis for the design and optimization of the TBC microstructure.  相似文献   

10.
Nanostructured 30 mol% LaPO4 doped Gd2Zr2O7 (Gd2Zr2O7-LaPO4) thermal barrier coatings (TBCs) were produced by air plasma spraying (APS). The coatings consist of Gd2Zr2O7 and LaPO4 phases, with desirable chemical composition and obvious nanozones embedded in the coating microstructure. Calcium-magnesium-alumina- silicate (CMAS) corrosion tests were carried out at 1250 °C for 1–8 h to study the corrosion resistance of the coatings. Results indicated that the nanostructured Gd2Zr2O7-LaPO4 TBCs reveals high resistance to penetration by the CMAS melt. During corrosion tests, an impervious crystalline reaction layer consisting of Gd-La-P apatite, anorthite, spinel and tetragonal ZrO2 phases forms on the coating surfaces. The layer is stable at high temperatures and has significant effect on preventing further infiltration of the molten CMAS into the coatings. Furthermore, the porous nanozones could gather the penetrated molten CMAS like as an absorbent, which benefits the CMAS resistance of the coatings.  相似文献   

11.
In this study, first, Gd2Zr2O7/ceria–yttria stabilized zirconia (GZ/CYSZ) TBCs having multilayered and functionally graded designs were subjected to thermal shock (TS) test. The GZ/CYSZ functionally graded coatings displayed better thermal shock resistance than multilayered and single layered Gd2Zr2O7 coatings. Second, single layered YSZ and functionally graded eight layered GZ/CYSZ coating (FG8) having superior TS life time were selected for CMAS + hot corrosion test. CMAS + hot corrosion tests were carried out in the same experiment at once. Furthermore, to generate a thermal gradient, specimens were cooled from the back surface of the substrate while heating from the top surface of the TBC by a CO2 laser beam. Microstructural characterizations showed that the reaction products were penetrated locally inside of the YSZ. On the other hand, a reaction layer having ∼6 μm thickness between CMAS and Gd2Zr2O7 was seen. This reaction layer inhibited to further penetration of the reaction products inside of the FG8.  相似文献   

12.
Calcium–magnesium–alumina–silicate (CMAS) corrosion significantly affects the durability of thermal barrier coatings (TBCs). In this study, Y2O3 partially stabilized ZrO2 (YSZ) TBCs are produced by electron beam-physical vapor deposition, followed by deposition of a Pt layer on the coating surfaces to improve the CMAS resistance. After exposure to 1250 °C for 2 h, the YSZ TBCs were severely attacked by molten CMAS, whereas the Pt-covered coatings exhibited improved CMAS resistance. However, the Pt layers seemed to be easily destroyed by the molten CMAS. With increased heat duration, the Pt layers became thinner. After CMAS attack at 1250 °C for 8 h, only a small amount of Pt remained on the coating surfaces, leading to accelerated degradation of the coatings. To fully exploit the protectiveness of the Pt layers against CMAS attack, it is necessary to improve the thermal compatibility between the Pt layers and molten CMAS.  相似文献   

13.
The degradation of thermal barrier coatings (TBCs) by calcium-magnesium-alumina-silicate (CMAS) attack has become increasingly dramatic. Y4Al2O9 ceramic, a new potential TBC candidate, has received an increasing attention. In this study, porous Y4Al2O9 ceramic pellets, instead of actual TBCs, are used to investigate the CMAS corrosion resistance at 1250 °C. Results indicate that Y4Al2O9 reacts with CMAS melt to form an impervious sealing layer mainly containing Ca-Y-Si apatite, which could mitigate CMAS further penetration. Once the sealing layer formed, further reaction would occur above the layer accompanying by the recession of sealing layer. This process is probably related to a solid state diffusion.  相似文献   

14.
The stress caused by calcium–magnesium–alumino–silicate (CMAS) corrosion is a critical factor in thermal barrier failure of thermal barrier coatings (TBCs). For the service safety of TBCs, it is important to characterize the stress inside TBCs during CMAS corrosion using a nondestructive and accurate method. In this study, photoluminescence spectroscopy technology was applied to characterize the stress in TBCs during CMAS corrosion. First, TBC specimens containing yttrium–aluminum–garnet doped with trace Ce3+ ions (YAG:Ce3+)/yttrium oxide partially stabilized zirconia double-ceramic-layer were prepared by atmospheric plasma spraying. Then, CMAS corrosion experiments were performed using the TBC specimens, and a mechanical model was derived based on Ce3+ photoluminescence spectroscopy to investigate the stress in the TBCs. Finally, the microstructure, extent of CMAS corrosion and stress field in TBC specimens, was characterized. The results reveal that the penetration of CMAS leads to local stress concentration and a nonlinear stress distribution from the outside surface to the inside of the YAG:Ce3+ layer. In addition, an increase in corrosion time, temperature, and CMAS concentration can significantly influence the evolution of the stress field in TBCs.  相似文献   

15.
The addition of C/MgAl2O4 composite powders can improve the thermal shock resistance of low-carbon Al2O3–C refractories attribute to the formation of microcracks in the agglomerated structure, thus consuming more thermal stress and strain energy. Moreover, C/MgAl2O4 composite powders additive promote the formation of short fibrous ceramic phases in the refractories, which suggest a bridging role in the interior of the refractories and increase its toughness. Furthermore, the C/MgAl2O4 composite powders also result in a remarkable enhancement of the slag corrosion resistance in the refractories.  相似文献   

16.
Aiming to improve the thermal shock resistance of thermal barrier coatings (TBCs), the plasma-sprayed 7YSZ TBCs were modified by selective laser remelting and selective laser alloying, respectively, in this study. A self-healing agent TiAl3 was introduced into the 7YSZ TBCs by selective laser alloying to fill cracks during thermal cycling. The thermal shock experiments of the plasma-sprayed, laser-remelted, and laser-alloyed TBCs were conducted by a means of heating and water-quenching method. Results revealed that some segmented microcracks were distributed on the surface of the laser-remelted and the laser-alloyed zones, showing a dense columnar crystal structure. After thermal shock tests, the numbers of segmented microcracks on the laser-remelted coating increased, whereas, in the laser-alloyed condition, some irregular particles formed, leading to the decreased numbers of segmented microcracks. The laser-alloyed coating exhibited the best thermal shock resistance, followed by the laser-remelted condition, with the thermal shock lifetime 3.3 and 2.7 times higher than that of the as-sprayed coating, respectively. On the one hand, both columnar grains and segmented microcracks in the laser-treated zone could effectively improve the strain tolerance of coatings. On the other hand, the oxidation products of TiAl3 under high-temperature condition could seal the microcracks to postpone the crack connection. Thus, the thermal shock resistance of the laser-treated coatings was significantly improved.  相似文献   

17.
《Ceramics International》2022,48(24):36450-36459
In the present work, YSZ TBCs and 10 wt% CeO2-doped YSZ thermal barrier coatings (CeYSZ TBCs) were prepared via atmospheric plasma spraying(APS) respectively, whereupon high temperature oxidation experiment was carried out at 1100 °C to compare the high temperature oxidation behavior and mechanism of the two TBCs. The results showed that the doping of CeO2 reduced the porosity of YSZ TBCs by 23%, resulting in smaller oxidation weight gain and lower TGO growth rates for CeYSZ TBCs. Besides, the TGO generated in CeYSZ TBCs was obviously thinner and there were fewer defects inside it. For YSZ TBCs, as the oxidation process proceeded, Al, Cr, Co and Ni elements in the bonding coating were oxidized successively to form loose and porous spinel type oxides (CS), which was apt to cause the spalling failure of TBCs. While, the Al2O3 layer of the TGO generated in CeYSZ TBCs ruptured later than that in YSZ TBCs, which delayed the oxidation of Cr, Co, and Ni elements and the formation of CS accordingly. Therefore, CeO2 doping can effectively improve the high temperature oxidation resistance of YSZ TBCs.  相似文献   

18.
Calcium-magnesium-alumina-silicate (CMAS) attack has been a great challenge for the application of thermal barrier coatings (TBCs) in modern turbine engines. In this study, a series of prospective TBC candidate materials, Ba2REAlO5 (RE = Yb, Er, Dy), are found to have high resistance to CMAS attack. The rapid formation of a continuous crystalline layer on sample surface contributes to this desirable attribute. At 1250 °C, Ba2REAlO5 dissolve in the molten CMAS, accumulating Ba, RE and Al in the melt, which could trigger the crystallization of celsian, apatite and wollastonite crystals. Especially, the formation of the crystalline layer in the Ba2DyAlO5 sample is the fastest. This study also reveals that Ba is a useful element for altering CMAS composition to precipitate celsian. Thus, doping Ba2+ in yttria partially stabilized zirconia or other novel TBCs might be an attractive way of mitigating CMAS attack.  相似文献   

19.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   

20.
《Ceramics International》2021,47(20):28685-28697
Because the CMAS corrosion and phase transformation at elevated temperatures above 1250 °C have limited the applications of traditional YSZ, the design of novel thermal barrier materials is a hotspot. GdTaO4 is considered as a type of potential novel thermal barrier material owing to its low thermal conductivity. In this study, the mechanical and thermal properties, CMAS corrosion resistance, and the wettability of the GdTaO4 were studied and compared with that of YSZ. The results show that the coefficient of thermal expansion and hardness of GdTaO4 are 14.1 × 10−6 K−1 (1350 °C) and 534.2 Hv0.3 respectively. The thickness of CMAS reaction layer of GdTaO4 is ~30.8 μm after 24 h reaction at 1350 °C, which is thinner than that of YSZ. After corrosion reaction, the CMAS glass aggregated instead of completely disappearing or continuously extending over the surface of GdTaO4. The main reaction product is Ca2Ta2O7, and the anorthite phase may not be detected, which is similar to YTaO4. By comparison, the dense substrate of YSZ became porous and CMAS glass has disappeared after 10 h. CMAS corrosion at 1350 °C. The on-line contact angle results show that the wettability of CMAS on GdTaO4 is worse than that on YSZ at 1350 °C, while the opposite of the work of adhesion, which indicates that GdTaO4 can remove liquid CMAS more easily than YSZ TBCs during the service. Furthermore, the corrosion depth and areas of GdTaO4 are smaller than those of YSZ in the same situation. These findings suggest that GdTaO4 possesses better high-temperature properties and CMAS corrosion resistance than YSZ as a kind of potential of thermal barrier material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号