首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using cost-effective fabrication methods to manufacture a high-performance solid oxide fuel cell (SOFC) is helpful to enhance the commercial viability. Here, we report an anode-supported SOFC with a three-layer Gd0.1Ce0.9O1.95 (gadolinia-doped-ceria [GDC])/Y0.148Zr0.852O1.926 (8YSZ)/GDC electrolyte system. The first dense GDC electrolyte is fabricated by co-sintering a thin, screen-printed GDC layer with the anode support (NiO–8YSZ substrate and NiO–GDC anode) at 1400°C for 5 h. Subsequently, two electrolyte layers are deposited via physical vapor deposition. The total electrolyte thickness is less than 5 μm in an area of 5 × 5 cm2, enabling an area-specific ohmic resistance as low as 0.125 Ω cm2 at 500°C (under open circuit voltage), and contributing to a power density as high as 1.2 W cm2 at 650°C (at an operating cell voltage of 0.7 V, using humidified [10 vol.% H2O] H2 as fuel and air as oxidant). This work provides an effective strategy and shows the great potential of using GDC as an electrolyte for high-performance SOFC at intermediate temperature.  相似文献   

2.
《Ceramics International》2016,42(10):11772-11779
Equal amounts of Gd0.1Ce0.9O2−δ (GDC) were added to La0.65Sr0.3MnO3−δ/(Y2O3)0.08(ZrO2)0.92 (LSM/YSZ) powder either by physical mixing or by sol–gel process, to produce a porous cathode support for solid oxide fuel cells (SOFCs). The effect of the GDC mixing method was analyzed in view of sinterability, thermal expansion coefficient, microstructure, porosity, and electrical conductivity of the LSM/YSZ composite. GDC infiltrated LSM/YSZ (G-LY) composite showed a highly porous microstructure when compared with mechanically mixed LSM/YSZ (LY) and LSM/YSZ/GDC (LYG) composites. The cathode support composites were used to fabricate the button SOFCs by slurry coating of YSZ electrolyte and a nickel/YSZ anode functional layer, followed by co-firing at 1250 °C. The G-LY composite cathode-supported SOFC showed maximum power densities of 215, 316, and 396 mW cm−2 at 750, 800, and 850 °C, respectively, using dry hydrogen as fuel. Results showed that the GDC deposition by sol–gel process on LSM/YSZ powder before sintering is a promising technique for producing porous cathode support for the SOFCs.  相似文献   

3.
Developing MIEC materials with high electrocatalytic performance for the ORR and good thermal/chemical/structural stability is of paramount importance to the success of solid oxide fuel cells (SOFCs). In this work, high-activity Bi0.5Sr0.5FeO3-δ-xCe0.9Gd0.1O1.95 (BSFO-xGDC, x = 10, 20, 30 and 40 wt%) oxygen electrodes are synthesized, and confirmed by XRD, SEM and EIS, respectively. The crystal structure, microstructure, electrochemical property and performance stability of the promising BSFO-xGDC composite cathodes are systematically evaluated. It is found that introducing GDC nanoparticles can obviously improve the electrochemical property of the porous composite electrode. Among all these composite cathodes, BSFO-30GDC composite cathode shows the best ORR activity. The peak power density of anode supported single cells employing BSFO-30GDC composite cathode reaches 709 mW cm?2 and the electrode polarization resistance (Rp) of the BSFO-30GDC is about 0.14 Ω cm2 at 700 °C. The analysis of the oxygen reduction kinetic indicates that the major electrochemical process of the GDC-decorated composite cathode is oxygen adsorption-dissociation. These preliminary results demonstrated that BSFO-30GDC is a prospective composite cathode catalyst for SOFCs because of its outstanding ORR activity.  相似文献   

4.
The ionic conduction of perovskite-type oxides remains a fundamental and important issue in the research of solid oxide fuel cells (SOFCs). In this research, a thin perovskite-type ceramic membrane was fabricated in situ at anode side attached to the surface of Gd0.2Ce0·8O1.9 (GDC20) electrolyte membrane. The single cell working between H2 and static air showed good stability (over 50 h), high open circuit voltages (above 1.0 V) as well as high peak power densities (749-264 mW cm?2) from 600 to 500 °C. Detailed analyses of current research demonstrated that the thin perovskite film mainly possessed the oxygen ion conductivity under reducing atmosphere, while the proton conductivity was severely suppressed, showing the high flexibility in ionic conductivity of perovskite oxide. This work also implies that the oxygen ion and proton conduction may be in high correlation with each other, which provides important information to unveil the nature of the ionic conduction of perovskite-type oxides.  相似文献   

5.
C. Fu  X. Ge  S. H. Chan  Q. Liu 《Fuel Cells》2012,12(3):450-456
Large‐size, 9.5 cm × 9.5 cm, Ni‐Gd0.1Ce0.9O1.95 (Ni‐GDC) anode‐supported solid oxide fuel cell (SOFC) has been successfully fabricated with NiO‐GDC anode substrate prepared by tape casting method and thin‐film GDC electrolyte fabricated by screen‐printing method. Influence of the sintering shrinkage behavior of NiO‐GDC anode substrate on the densification of thin GDC electrolyte film and on the flatness of the co‐sintered electrolyte/anode bi‐layer was studied. The increase in the pore‐former content in the anode substrate improved the densification of GDC electrolyte film. Pre‐sintering temperature of the anode substrate was optimized to obtain a homogeneous electrolyte film, significantly reducing the mismatch between the electrolyte and anode substrate and improving the electrolyte quality. Dense GDC electrolyte film and flat electrolyte/anode bi‐layer can be fabricated by adding 10 wt.% of pore‐former into the composite anode and pre‐sintering it at 1,100 °C for 2 h. Composite cathode, La0.6Sr0.4Fe0.8Co0.2O3, and GDC (LSCF‐GDC), was screen‐printed on the as‐prepared electrolyte surface and sintered to form a complete single cell. The maximum power density of the single cell reached 497 mW cm–2 at 600 °C and 953 mW cm–2 at 650 °C with hydrogen as fuel and air as oxidant.  相似文献   

6.
Electrolyte powders with low sintering temperature and high-ionic conductivity can considerably facilitate the fabrication and performance of solid oxide fuel cells (SOFCs). Gadolinia-doped ceria (GDC) is a promising electrolyte for developing intermediate- and low-temperature (IT and LT) SOFCs. However, the conventional sintering temperature for GDC is usually above 1200 °C unless additives are used. In this work, a nanocrystalline powder of GDC, (10 mol% Gd dopant, Gd0.1Ce0.9O1.95) with low-sintering temperature has been synthesized using ammonium benzoate as a novel, environmentally friendly and cost-effective precursor/precipitant. The synthesized benzoate powders (termed washed- and non-washed samples) were calcined at a relatively low temperature of 500 °C for 6 h. Physicochemical characteristics were determined using thermal analysis (TG/DTA), Raman spectroscopy, FT-IR, SEM/EDX, XRD, nitrogen absorptiometry, and dilatometry. Dilatometry showed that the newly synthesized GDC samples (washed and non-washed routes) start to shrink at temperatures of 500 and 600 °C (respectively), reaching their maximum sintering rate at 650 and 750 °C. Sintering of pelletized electrolyte substrates at the sintering onset temperature for commercial GDC powder (950 °C) for 6 h, showed densification of washed- and non-washed samples, obtaining 97.48 and 98.43% respectively, relative to theoretical density. The electrochemical impedance spectroscopy (EIS) analysis for the electrolyte pellets sintered at 950 °C showed a total electrical conductivity of 3.83 × 10?2 and 5.90 × 10?2 S cm?1 (under air atmosphere at 750 °C) for washed- and non-washed samples, respectively. This is the first report of a GDC synthesis, where a considerable improvement in sinterability and electrical conductivity of the product GDC is observed at 950 °C without additives addition.  相似文献   

7.
《Ceramics International》2021,47(23):32804-32816
This work reports the preparation of nanocrystalline Ni-Gd0.1Ce0.9O1.95 (NiO-GDC) anode powders using a novel single-step co-precipitation synthesis method (carboxylate route) based on ammonium tartrate as a low-cost green precipitant. The thermogravimetric analysis (TGA) of the synthesised powder showed the complete calcination/crystallisation of the resultant precipitates to take place at 500 °C. The prepared NiO-GDC powder was coated on a GDC electrolyte disc and co-sintered at 1300 °C. A mixture of La0.6Sr0.4Co0.2Fe0.8O3−δ and GDC was used as the cathode material and subsequently coated onto the anode-electrolyte bilayer, resulting in the fabrication of a NiO-GDC|GDC|La0.6Sr0.4Co0.2Fe0.8O3−δ-GDC cell. The crystallite size of both NiO and CeO2 phases were estimated using the X-ray powder diffraction (XRD) profiles and were calculated to be ~14 nm. Applied H2 temperature-programmed reduction (H2-TPR) analysis indicated a synergetic effect among different anode composites' constituents, where an intense interaction between the dispersed NiO nanocrystalline particles and the GDC crystallite phase had weakened the metal-oxygen bonds in the synthesised anode composites, resulting in a strikingly high catalytic activity at temperatures as low as 300 °C. The electrochemical impedance spectroscopy (EIS) and the electrochemical performance of the fabricated cells were measured over a broad range of operating temperatures (500–750 °C) and H2/Ar-ratios of the anode fuel (e.g. 100%–15%). Quantitative analysis from the EIS data and the application of the distribution of relaxation times (DRT) method allowed for the estimation of the activation energies of the anodic high and intermediate frequency processes that were 0.45 eV and 0.76 eV, respectively. This is the first report of a NiO-GDC synthesis, where a considerable improvement in activation energy is observed at the low-temperature region. Such low activation energies were later associated with the adsorption/desorption process of water molecules at the surface of NiO-GDC composite, indicating a high activity towards hydrogen oxidation.  相似文献   

8.
Solid oxide fuel cells (SOFCs) based on the proton conducting BaZr0.1Ce0.7Y0.2O3–δ (BZCY) electrolyte were prepared and tested in 500–700 °C using humidified H2 as fuel (100 cm3 min–1 with 3% H2O) and dry O2 (50 cm3 min–1) as oxidant. Thin NiO‐BZCY anode functional layers (AFL) with 0, 5, 10 and 15 wt.% carbon pore former were inserted between the NiO‐BZCY anode and BZCY electrolyte to enhance the cell performance. The anode/AFL/BZCY half cells were prepared by tape casting and co‐sintering (1,300 °C/8 h), while the Sm0.5Sr0.5CoO3–δ (SSC) cathodes were prepared by thermal spray deposition. Well adhered planar SOFCs were obtained and the test results indicated that the SOFC with an AFL containing 10 wt.% pore former content showed the best performance: area specific resistance as low as 0.39 Ω cm2 and peak power density as high as 0.863 W cm–2 were obtained at 700 °C. High open circuit voltages ranging from 1.00 to 1.12 V in 700–500 °C also indicated negligible leakage of fuel gas through the electrolyte.  相似文献   

9.
A La0.5Sr0.5Fe0.9Mo0.1O3-δ-CeO2 (LSFM-CeO2) composite was prepared by impregnating CeO2 into porous La0.5Sr0.5Fe0.9Mo0.1O3-δ perovskite and was used as an anode material for proton-conducting solid oxide fuel cells (SOFCs). The maximum power densities of the BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte-supported single cell with LSFM-CeO2 as the anode reached 291 mW cm?2 and 190 mW cm?2 in hydrogen and ethane fuel at 750 °C, respectively, which are significantly higher than those of a single cell with only LSFM as the anode. Additionally, the ethylene selectivity and ethylene yield from ethane for the fuel cell at 750 °C were as high as 93.4% and 37.1%, respectively. The single cell also showed negligible degradation in performance and no carbon deposition during continuous operation for 22 h under an ethane fuel atmosphere. The improved electrochemical performance due to the impregnation of CeO2 can be a result of enhanced electronic and ionic conductivity, abundant active sites, and a broad three-phase interface in the resultant composite anode. The LSFM-CeO2 composite is believed to be a promising anode material for proton-conducting SOFCs for co-producing electricity and high-value chemicals from hydrocarbon fuels.  相似文献   

10.
A dense Ce0.9Gd0.1O2−d (GDC) interlayer is an essential component of the SOFCs to inhibit interfacial elemental diffusion between zirconia-based electrolytes (eg YSZ) and cathodes. However, the characteristic high sintering temperature of GDC (>1400°C) makes it challenging to fabricate an effective highly dense interlayer owing to the formation of more resistive (Zr,Ce)O2 interfacial solid solutions with YSZ at those temperatures. To fabricate a useful GDC interlayer, we studied the influence of transition metal (TM) (Co, Cu, Fe, Mn, & Zn) doping on the sintering and electrochemical properties of GDC. Dilatometry data showed dramatic drops in the necking and final sintering temperatures for the TM-doped GDCs, improving the densification of the GDC in the order of Fe > Co > Mn > Cu > Zn. However, the electrochemical impedance data showed that among various transition metal dopants, Mn doping resulted in the best electrochemical properties. Anode supported SOFCs with Mn-doped, nano, and commercial-micron GDC interlayers were compared with regard to their performance and stability levels. Although all of the SOFCs showed stable performance, the SOFC with the Mn-doped GDC interlayer showed the highest power density of 1.14 W cm−2 at 750°C. Hence, Mn-doped GDC is suggested for application as an effective diffusion barrier layer in SOFCs.  相似文献   

11.
Due to the low density, low thermal conductivity and low water absorption, porous glass-ceramics have demonstrated excellent performance for thermal insulation. Closed pore structure can greatly reduce the thermal conductivity and convection as well as achieve high mechanical strength. However, yet it is difficult to realize closed pore structure due to the critical preparation condition. Here we use Fe2O3, which is the by-product of copper tailings, to optimize the pores structures of the porous glass-ceramics and facilitate the formation of uniform closed pore structure. The porous glass-ceramics were prepared by melting-quenching method, followed by sufficiently foaming through powder sintering route with SiC powders as foaming agent. The foaming process, micro structure, pore structure and thermal insulation performance were directly observed by heating microscope, scanning electron microscope (SEM), X-ray computed tomography and infrared thermal imager. The results show that the addition of Fe2O3 modified the depolymerization degree of the glass network and increased the numbers of non-bridged oxygen, decreasing the foaming temperature. The resultant closed pore structure showed a better thermal insulating performance than open pore structure. Accordingly, we achieved a low thermal conductivity of 0.19 W·m?1·K?1 with the highest specific strength of 19.55 MPa·g?1·cm?3 based on closed pore structure.  相似文献   

12.
Freeze casting is an established method for fabricating porous ceramic structures with controlled porosity and pore geometries. Herein, we developed a novel freeze casting and freeze drying process to fabricate tubular anode supports for solid oxide fuel cells (SOFCs). Freeze casting was performed by injecting aqueous anode slurry to a dual-purpose freeze casting and freeze drying mold wrapped with peripheral coils for flowing a coolant. With the use of an ice barrier layer, proper control of the experimental setup, and adjustments in the drying temperature profile, complete drying of the individual anode tubes was achieved in 4 hours. The freeze-cast anode tubes contained radially aligned columnar pore channels, thus significantly enhancing the gaseous diffusion. SOFC single cells with conventional Ni/yttria-stabilized zirconia/strontium-doped lanthanum manganite materials were prepared by dip coating the thin functional layers onto the anode support. Single cell tests showed that the concentration polarization was low owing to the highly porous anode support with directional pores. With H2/N2 (1:1) fuel, maximum power densities of 0.47, 0.36, and 0.27 W/cm2 were recorded at 800°C, 750°C, and 700°C, respectively. Our results demonstrate the feasibility of using freeze casting to obtain tubular SOFCs with desired microstructures and fast turn-around times.  相似文献   

13.
La2NiO4+δ‐based oxides, mixed ionic–electronic conductors with K2NiF4‐type structure, have been considerably investigated in recent decades as electrode materials for advanced solid oxide fuel cells (SOFCs) due to their high electrical conductivity and oxidation reduction reaction (ORR) activity. In this study, La1.7Ca0.3Ni0.75Cu0.25O4+δ was investigated as a potential cathode on La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte support. Furthermore, La1.7Ca0.3Ni0.75Cu0.25O4+δ was examined on thin Ce0.8Gd0.2O2 (GDC) electrolyte with Ni‐GDC anode support for intermediate temperature SOFCs (IT‐SOFCs). La1.7Ca0.3Ni0.75Cu0.25O4‐δ cathode with gadolinium doped ceria (GDC) electrolyte and NiO‐GDC anode support showed a maximum power density of 0.75 W/cm2 in H2 and lower polarization resistance, Rp (<0.1 Ω cm2), in impedance spectroscopy at 700°C.  相似文献   

14.
《Ceramics International》2020,46(15):24038-24044
In response to the urgent demand for highly active anodes for lower-temperature proton-conducting solid oxide fuel cells (H–SOFCs) and with the aim to explore the function of metal catalysts and porous skeletons, two series anode-supported BaZr0.1Ce0.7Y0.2O3-δ (BZCY)-based single cells with varying Ni catalysts and pore formers were assembled and evaluated comparably. In the exploration of Ni catalyst variable, the NBZCY65-35-20SS (65 wt% NiO in NiO-BZCY prepared with adding 20 wt% starch) anode possesses the highest performance, for the 1:1 vol ratio of Ni-BZCY could offer the maximum effective triple-phase boundary (TPB) area in the prerequisite of having abundant pores achieved with the 20 wt% pore former as a constant. In addition, both the NBZCY65-35-15SS and NBZCY65-35-25SS anode demonstrate inferior electrochemical properties separately due to the inadequate reducing gas transmission channels and reaction sites. The BZCY cell assembled with NBZCY65-35-20SS reveals an excellent performance, in which the peak power densities (PPDs) were 660, 539, 413, 272 mW cm−2 and the polarization resistances (RP) were 0.061, 0.126, 0.28, 0.652 Ω cm2 at 700, 650, 600, 550 °C, respectively. NBZCY65-35-20SS, which has both a superior TPB area and a fine porous anode skeleton, is a preferable option for anode-supported H–SOFCs. On the whole, the scientific regulations governing metal catalysis and pore-forming could be beneficial to the architecture of fine H–SOFC anode structures.  相似文献   

15.
Cobaltite based perovskites, such as Sm0.5Sr0.5Co3?δ (SSC), are attractive solid oxide fuel cell (SOFC) cathodes due to their high electrochemical activity and electrical conductivity. To obtain higher fuel cell performance with smaller particles, nano-sized SSC powders were synthesized by a complex method with/without carbon black, HB170. However, during synthesis, carbon black reacted with Sr, and unfortunately formed SrCO3. To obtain pure perovskite SSC, a calcination temperature of 900 °C is needed. At 680 °C, an SOFC with SSC (calcined at 700 °C and synthesized without HB170) exhibited a higher fuel cell performance, of 0.68W·cm?2, than that with SSCHB (calcined at 900 °C and synthesized with HB170), of 0.58W·cm?2. Adding GDC for composite cathode is more effective in SSCHB porous cathodes than in SSC porous cathodes. At 680 °C, the composite cathode of SSCHB6-GDC4 exhibited the highest maximum power density of 0.72W·cm?2 which results from the combined effects of lowered charge transfer polarization and mass transfer polarization. To obtain higher fuel cell performance, optimum composition and processes are necessary.  相似文献   

16.
In this paper, we report successful fabrication of a gadolinia-doped ceria (GDC) thin film using atomic layer deposition (ALD) for improving the performance of solid oxide fuel cells (SOFCs). By varying the deposition conditions and adjusting the configuration of the ALD supercycle, the doping ratio of ALD GDC was controlled. The morphology, crystallinity, and chemical composition of ALD GDC thin films were analyzed. ALD GDC showed different surface chemistry, including oxidation states, at different doping ratios. The application of ALD GDC in a SOFC led to an output power density enhancement greater than 2.5 times. With an anodic aluminum oxide (AAO) porous support structure, an ALD GDC thin film SOFC (TF-SOFC) showed a high power density of 288.24 mW/cm2 at an operating temperature of 450°C.  相似文献   

17.
Lanthanum-based iron- and cobalt-containing perovskite has a high potential as a cathode material because of its high electro-catalytic activity at a relatively low operating temperature in solid oxide fuel cells (SOFCs) (600–800). To enhance the electro-catalytic reduction of oxidants on La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF), Ga doped ceria (Ce0.9Gd0.1O1.95, GDC) supported LSCF (15LSCF/GDC) is successfully fabricated using an impregnation method with a ratio of 15 wt% LSCF and 85 wt% GDC. The cathodic polarization resistances of 15LSCF/GDC are 0.015 Ω cm2, 0.03 Ω cm2, 0.11 Ω cm2, and 0.37 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The simply mixed composite cathode with LSCF and GDC of the same compositions shows 0.05 Ω cm2, 0.2 Ω cm2, 0.56 Ω cm2, and 1.20 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The fuel cell performance of the SOFC with 15LSCF/GDC shows maximum power densities of 1.45 W cm?2, 1.2 W cm?2, and 0.8 W cm?2 at 780 °C, 730 °C, and 680 °C, respectively. GDC supported LSCF (15LSCF/GDC) shows a higher fuel cell performance with small compositions of LSCF due to the extension of triple phase boundaries and effective building of an electronic path.  相似文献   

18.
J. Ding  J. Liu  Y. Feng  G. Yin 《Fuel Cells》2011,11(3):469-473
Direct operation of anode‐supported cone‐shaped tubular low temperature solid oxide fuel cells (LT‐SOFCs) based on gadolinia‐doped ceria (GDC) electrolyte film with dimethyl ether (DME) fuel was preliminarily investigated in this study. The single cell exhibited maximum power densities of 500 and 350 mW cm–2 at 600 °C using moist hydrogen and DME as fuel, respectively. A durability test of the single NiO‐GDC/GDC/LSCF‐GDC cell was performed at a constant current of 0.1 A directly fuelled with DME for about 200 min at 600 °C. The results indicate that the single cell coking easily directly operated in DME fuel. EDX result shows a clear evidence of carbon deposition in the anode. Further studies are needed to develop the novel anti‐carbon anode materials, relate the carbon deposition with anode microstructure and cell‐operating condition.  相似文献   

19.
《Ceramics International》2015,41(6):7651-7660
We describe the manufacture and electrochemical characterization of micro-tubular anode supported solid oxide fuel cells (mT-SOFC) operating at intermediate temperatures (IT) using porous gadolinium-doped ceria (GDC: Ce0.9Gd0.1O2−δ) barrier layers. Rheological studies were performed to determine the deposition conditions by dip coating of the GDC and cathode layers. Two cell configurations (anode/electrolyte/barrier layer/cathode): single-layer cathode (Ni–YSZ/YSZ/GDC/LSCF) and double-layer cathode (Ni–YSZ/YSZ/GDC/LSCF–GDC/LSCF) were fabricated (YSZ: Zr0.92Y0.16O2.08; LSCF: La0.6Sr0.4Co0.2Fe0.8O3−δ). Effect of sintering conditions and microstructure features for the GDC layer and cathode layer in cell performance was studied. Current density–voltage (j–V) curves and impedance spectroscopy measurements were performed between 650–800 °C, using wet H2 as fuel and air as oxidant. The double-cathode cells using a GDC layer sintered at 1400 °C with porosity about 50% and pores and grain sizes about 1 μm, showed the best electrochemical response, achieving maximum power densities of up to 160 mW cm−2 at 650 °C and about 700 mW cm−2 at 800 °C. In this case GDC electrical bridges between cathode and electrolyte are preserved free of insulating phases. A preliminary test under operation at 800 °C shows no degradation at least during the first 100 h. These results demonstrated that these cells could compete with standard IT-SOFC, and the presented fabrication method is applicable for industrial-scale.  相似文献   

20.
《Ceramics International》2023,49(12):20290-20297
In this work, the Sm0.2Ce0.8O1.9 (SDC) buffer layer was used to replace the Gd0.1Ce0.9O1.95 (GDC) buffer layer to improve the long-term stability and performance of the solid oxide fuel cells (SOFCs) in the intermediate temperature (550–750 °C). The buffer layer was prepared by screen printing method. The micromorphology of the SDC buffer layer and the cell structures was observed by scanning electron microscopy (SEM). The electrochemical impedance spectroscopy (EIS) results showed that the polarization resistance (RP) of the cell with SDC buffer layer was smaller than that of the cell with GDC buffer layer, reducing the RP values by 43.52% and 43.33%, respectively (SDC-cell: 0.12 Ω cm2 at 650 °C and 0.27 Ω cm2 at 600 °C). The maximum power density of the cell with SDC buffer layer is 560 mW cm−2 at 650 °C, which was 25% higher than that with GDC buffer layer. The long-term durability of the cell with SDC buffer layer was better than that of the cell with GDC buffer layer. These provide an excellent prospect for utilizing SDC buffer layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号