首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, Zn2+-substituted Li2MgSiO4 ceramics (Li2(Mg1-xZnx)SiO4, x = 0.00, 0.05, 0.10, 0.15, and 0.20) were synthesized using a traditional solid-state method. A fixed amount of LiF sintering aid (1.5 wt%) was added to the ceramics for decreasing the sintering temperature and adjusting their microwave dielectric properties. X-ray diffraction (XRD) results revealed no secondary phases, and scanning electron microscopy (SEM) data suggest that the Zn2+ ion substitution increased the size and uniformity of the grains, thereby affecting the densification of the prepared ceramics. The maximum bulk density (2.94 g/cm3) was found in a Zn2+ ion-substituted ceramic with x = 0.10 at a relative density of 94.2% (compared with the XRD theoretical density). Excellent microwave dielectric properties (εr = 6.28, Q × f = 50400 GHz, and τf = ?145 ppm/°C) can also be obtained at this zirconium content. We believe that the developed ceramics are promising for use as antenna substrates or transmit/receive modules in low-temperature co-firing ceramic applications.  相似文献   

2.
A novel series of rock salt structured (1-x)Li2ZrO3-xMgO ceramics were prepared via the conventional solid state method. The tetragonal-cubic phase transition can be observed in the case of 0.5?≤?x?≤?0.6, which has been testified by the results of XRD and SEM-EDS. Relatively dense and homogeneous microstructure can be obtained for all the compositions sintered at 1500?°C. With the x value increasing from 0.5 to 0.8, the relative permittivity linearly decreases from 16.50 to 12.65, and the τf value decreases from ~?10?ppm/°C to ~?35?ppm/°C. The addition of MgO stabilizes the crystal structure and increases the bond energies in Li2ZrO3-MgO system, so there is an upward tendency in Q·f values from ~77,000?GHz to ~166,000?GHz. Typically, the Li2Mg4ZrO7 ceramics sintered at 1500?°C possesses excellent properties with εr?=?12.65, Q·f?=?165,924?GHz and τf=-34.66?ppm/°C, which makes these materials good candidates for microwave devices.  相似文献   

3.
《Ceramics International》2017,43(12):8951-8955
This study used Li2O–B2O3–SiO2–CaO–Al2O3 (LBSCA) glass to reduce the sintering temperature of LiAlO2 ceramics and to realise the low dielectric constants (ɛr<5) of low-temperature co-fired ceramic (LTCC) materials. LBSCA glass remarkably enhanced the densification of LiAlO2 ceramics. X-ray diffraction patterns indicated that only the γ-LiAlO2 phase occurred within the doping range of 1 wt% to 3.5 wt%. Scanning electron microscopy images showed dense and uniform grains in samples with 3.0 wt% LBSCA glass. These samples also exhibited low dielectric constants and low dielectric loss when sintered at 900 °C and 950 °C (i.e., ɛr=4.48, Qf=35,540 GHz and τf=−53 ppm/°C at 900 °C; ɛr=4.50, Qf=38,979 GHz and τf=−55 ppm/°C at 950 °C, respectively). The material prepared was chemically compatible with silver and showed potential in applications of high-frequency LTCC microwave substrates.  相似文献   

4.
Li2Ti1-x(Mg1/3Nb2/3)xO3 ceramics were prepared by conventional solid state process. Their structural evolution, grain growth kinetics and microwave dielectric properties have been studied in this paper. The results show that continuous solid solution could be formed within the experiment compositional range. The structure changed from long range ordered monoclinic into short range ordered cubic phase as the increase in x. Small levels of substitution for Ti4+by (Mg1/3Nb2/3)4+ slightly decreased the dielectric permittivity, while considerably improved the Q × f value. The temperature coefficient of resonant frequency changed from positive into negative value. The grain growth kinetics during sintering process and Q × f value of the sintered body were affected by different calcining temperature of mixed powders. Excellent combined microwave dielectric properties with εr ~21.0, Q × f  200 000 GHz and τf value of ?1 ppm/ °C could be obtained after optimizing calcining temperature for the x = 0.24 composition after sintering at 1250 °C/2 h.  相似文献   

5.
ZnO-deficient Zn2-xGeO4-x ceramics with 0.05?≤?x?≤?0.15 were synthesized because a ZnO secondary phase is formed in the stoichiometric Zn2GeO4 ceramics synthesized using micrometer-sized ZnO and GeO2 powders. The Zn1.9GeO3.9 ceramic sintered at 1000?°C showed a homogeneous Zn2GeO4 phase with good microwave dielectric properties: εr of 6.8, Q?×?f of 49,000?GHz, and τf of ?16.7?ppm/°C. However, its sintering temperature was still too high for it to be used as an advanced substrate for low-temperature co-fired ceramic devices. Therefore, various amounts of B2O3 were added to the Zn1.9GeO3.9 ceramics to reduce their sintering temperature. Owing to the formation of a B2O3-GeO2 liquid phase, these ceramics were well sintered at low temperatures between 925?°C and 950?°C. In particular, 15?mol% B2O3-added Zn1.9GeO3.9 ceramic sintered at 950?°C showed promising microwave dielectric properties for advanced substrates without the reaction with an Ag electrode: εr?=?6.9, Q?×?f?=?79,000?GHz, and τf?=??15?ppm/°C.  相似文献   

6.
A Li2ZnGe3O8 ceramic was investigated as a promising microwave dielectric material for low-temperature co-fired ceramics applications. Li2ZnGe3O8 ceramic was prepared via the conventional solid-state method. X-ray diffraction data shows that Li2ZnGe3O8 ceramic crystallized into a cubic spinel structure with a space group of P4132. Dense ceramic with a relative densities of 96.3% were obtained when sintered at 945 °C for 4 h and exhibited the optimum microwave properties with a relative permittivity (εr) of 10.3, a quality factor (Q × f) of 47,400 GHz (at 13.3 GHz), and a temperature coefficient of resonance frequency (τf) of −63.9 ppm/°C. The large negative τf of Li2ZnGe3O8 ceramic could be compensated by rutile TiO2, and 0.9Li2ZnGe3O8–0.1TiO20·1TiO2 ceramic sintered at 950 °C for 4 h exhibited improved microwave dielectric properties with a near-zero τf of −1.6 ppm/°C along with εr of 11.3 and a Q × f of 35,800 GHz (11.6 GHz). Moreover, Li2ZnGe3O8 was found to be chemically compatible with silver electrode when sintered at 945 °C.  相似文献   

7.
The structure and microwave dielectric properties of Sr2(Ti1-xSnx)O4 ceramics were determined in the entire composition range of x?=?0–1.0. X-ray diffraction patterns and Raman spectra indicated a composition-induced onset of octahedral tilting at x?=?0.75, and the crystal structure transformed from tetragonal (I4/mmm) to orthorhombic (Pccn). An obvious change of grain morphology was observed in the phase transformation region as well. The variations of the microwave dielectric properties with composition were systematically investigated and the effect of octahedral tilting on the evolution of τf value was emphasized. Moreover, the relationship between τε and tolerance factor of the present ceramics was revealed and compared with the empirical rule in perovskite structure. The role of tolerance factor in designing the materials with required performance was highlighted.  相似文献   

8.
Low-firing (Zn0.9Mg0.1)1?xCoxTiO3 (x = 0.02–0.10) (ZMCxT) microwave dielectric ceramics with high temperature stability were synthesized via conventional solid-state reaction. The influences of Co2O3 substitution on the phase composition, microstructure and microwave dielectric properties of ZMCxT ceramics were discussed. Rietveld refinement results show the coexistence of ZnTiO3 and ZnB2O4 phases at x = 0.02–0.10. (Zn0.9Mg0.1)1?xCoxTiO3 ceramic with x = 0.06 (ZMC0.06T) obtains the best combination microwave dielectric properties of: εr = 21.58, Q × f = 53,948 GHz, τf = ? 54.38 ppm/°C. For expanding its application in LTCC field, 3 wt% ZnO-B2O3-SiO2 (ZBS) and 9 wt% TiO2 was added into ZMC0.06T ceramic, great microwave dielectric properties were achieved at 900 °C for 4 h: εr = 26.03, Q × f = 34,830 GHz, τf = ? 4 ppm/°C, making the composite ceramic a promising candidate for LTCC industry.  相似文献   

9.
In this study, the Ba3P2O8 and Mg2B2O5 were fabricated by the solid-state reaction method separately, and the (1-x)Ba3P2O8-xMg2B2O5 (x = 0.2–0.4) low-temperature co-fired ceramic (LTCC) materials were obtained in the sintering temperature range of 880–960 °C. The phase compositions, microstructures, elemental compositions, and microwave dielectric properties of the (1-x)Ba3P2O8-xMg2B2O5 composite ceramics were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and TE01δ mode dielectric resonator method, respectively. The results revealed that the Mg2B2O5 phase and Ba3P2O8 phase could coexist well in the (1-x)Ba3P2O8-xMg2B2O5 composite ceramics without formation of any new phases. The abnormal grain growth of Ba3P2O8 grains was inhibited by the addition of Mg2B2O5. In addition, through composition of Ba3P2O8 and Mg2B2O5, the temperature coefficient of resonant frequency (τf) and quality factor (Q×f) were effectively optimized, and the sintering temperature was reduced to 880–960 °C. The optimal performance of 0.8Ba3P2O8-0.2Mg2B2O5 composite ceramic was achieved at a sintering temperature of 920 °C, τf = ?1.9 ppm/°C, Q×f = 61,250 GHz, and a low permittivity εr = 10.7. The chemical compatibility test demonstrated that the composite ceramic could coexist well with silver, which indicated that the 0.8Ba3P2O8-0.2Mg2B2O5 composite ceramic is a candidate LTCC material with wide application prospects.  相似文献   

10.
Lead-free Ba0.90Ca0.10Ti0.90Sn0.10O3-xY2O3 (BCTSY, x = 0–0.09) ceramics were prepared by traditional solid-state sintering method. All the BCTSY samples showed pure perovskite structures without detectable impurity. Orthorhombic/tetragonal phase coexisted in the sample of x = 0.03 to 0.07. Remarkable enhancement of the electric properties were achieved at x = 0.03 with d33 of 650 pC/N, Kp of 59.6%, and the remnant polarization Pr of 10.2 μC/cm2. The strengthened temperature stability of piezoelectricity is beneficial to the application of the piezoceramics.  相似文献   

11.
《Ceramics International》2023,49(7):10213-10223
In this work, we have systematically studied the effects of La3+/Sr2+ dopants on the crystal structure, microstructure, dielectric response and electrical properties of (Ca0.9Sr0.1)1-xLa2x/3Cu3Ti4O12 (x = 0, 0.025, 0.05 and 0.075) ceramics. XRD results show that the lattice parameter increases with the increase in the La3+ content. SEM micrographs illustrate that a small amount added of La3+ can reduce the grain size of CCTO during sintering. With increasing La3+ content, the grains grow larger. Dielectric measurements indicated that all doped samples synthesized by the solid-state reaction exhibit giant dielectric constants ε'>104 over a large frequency range (10 Hz to 1 MHz) and at any temperature below 600 K. In particular, the ceramic with x = 0.05 exhibits a colossal dielectric permittivity ~5.49 × 104; which increases by about 50% compared to that of the undoped ceramic. In addition, the doped ceramic also presents a low dielectric loss ~ 0.08 at 20 °C and 0.6 kHz. The giant dielectric properties of these samples can be explained by the (IBLC) model.  相似文献   

12.
In this study, the effects of the Mg2+ ions replaced by Ca2+ ions on the microwave dielectric properties of newly developed MgZrTa2O8 were investigated. Mg1-xCaxZrTa2O8 (x = 0–1.0) ceramics were prepared via a solid-state reaction method. Calcination of the mixed powders was performed at 1200 °C and sintering of the powder compacts was accomplished at temperatures from 1200 to 1550 °C. The substitution of Ca2+ significantly inhibited the densification of Mg1-xCaxZrTa2O8, led to the expansion of the unit cells, and triggered the formation of a second phase, CaTa2O6. The porosity-corrected relative permittivity increased almost linearly with the x value because of the replacement of the less polarizable Mg2+ ions by the more polarizable Ca2+ ions. The variation in the Q × f values followed a similar trend as that of the sintered density, and the change trend in the τf values was in accordance with that of relative permittivity. The best composition appeared to be Mg0.9Ca0.1ZrTa2O8, which showed excellent microwave dielectric properties of εr = 22.5, Q × f = 231,951 GHz, and τf = −32.9 ppm/°C. The Q × f value obtained is the highest among the wolframite dielectric ceramics reported in literature.  相似文献   

13.
The crystal structure and microwave dielectric properties of Zn3-xCux(BO3)2 (x = 0–0.12) ceramics prepared via a traditional solid-state reaction method were investigated by means of X-ray diffraction (XRD) utilizing the Rietveld refinement, complex chemical bond theory, and Raman spectroscopy. XRD showed that all samples were single phase. The samples maintained a low permittivity, even at higher Cu2+ contents, which is conducive to the shortening of signal delay time, and intimately related to the average bond ionicity and Raman shift. Moreover, proper Cu2+ substitution greatly reduced the dielectric loss associated with the lattice energy. Cu2+ entering the lattice optimized the temperature coefficient of resonance frequency (τf) values and improved the temperature stability of samples by affecting the bond energy. Optimal microwave dielectric properties were: εr = 6.64, Q × f = 160,887 GHz, τf = ?42.76 ppm/°C for Zn2.96Cu0.04(BO3)2 ceramics sintered at 850 °C for 3 h, which exhibited good chemical compatibility with silver and are therefore good candidate materials for Low temperature co-fired ceramic applications.  相似文献   

14.
Two low temperature sintered NaPb2B2V3O12 (B?=?Mg, Zn) ceramics with garnet structure were synthesized through conventional solid state reaction route and their crystal structure and microwave dielectric properties were investigated for the first time. Rietveld refinements of XRD patterns show both the compounds belong to cubic symmetry with space group Ia-3d. Observed number of Raman bands and group theoretical predictions also confirm cubic symmetry with space group Ia-3d for both NPMVO and NPZVO. At the optimum sintering temperature of 725?°C NPMVO has a relative permittivity of 20.6?±?0.2, unloaded quality factor (Quxf) of 22,800?±?1500?GHz (f?=?7.7?GHz) and temperature coefficient of resonant frequency +25.1?±?1?ppm/°C while NPZVO has relative permittivity of 22.4?±?0.2, Quxf of 7900?±?1500?GHz (f?=?7.4?GHz) and near zero temperature coefficient of resonant frequency of -6?±?1?ppm/°C at 650?°C. The relative permittivity of the compounds is inversely related to the corresponding Raman shifts.  相似文献   

15.
Li6MgTiNb1?xVxO8F (0 ≤ x ≤ 0.08) ceramics were prepared using a solid-state reaction. The correlations between their sintering characteristics and the microwave dielectric performance as functions of V5+ substitution and sintering temperature were investigated systematically. Rietveld refinements of the X-ray diffraction data showed that all the samples had a cubic rock-salt structure. The Li6MgTiNbO8F ceramic sintered at 1175 °C exhibited an attractive Q × f value of 105,700 ± 1600 GHz. The substitution of V5+ for Nb5+ decreased the sintering temperature while improving the relative density and relative permittivity. The V-beared Li6MgTiNb0.98V0.02O8F ceramic sintered at 850 °C showed outstanding dielectric properties of εr = 18.14 ± 0.05, Q × f = 58,300 ± 1300 GHz, and τf = ?42.66 ± 0.33 ppm/°C. Good chemical compatibility with Ag electrodes highlighted the potential of the ceramic in low-temperature co-fired ceramic applications.  相似文献   

16.
《Ceramics International》2016,42(16):18333-18337
The effect of CuO/MnO additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 3ZrO2-3TiO2-ZnNb2O6 (3Z-3T-ZN) ceramics prepared by conventional solid-state route were systematically investigated. CuO/MnO doped ceramics exhibited a main phase of α-PbO2-structured ZrTi2O6 and a secondary phase of rutile TiO2. SEM results showed that the grain size of MnO doped ceramics became larger with increasing amount of dopants. The presence of CuO/MnO additives effectively reduced the sintering temperature of 3Z-3T-ZN ceramics to 1220 °C. MnO doped into ceramics could enhance the Q×f values significantly. The 0.5 wt% CuO doped 3Z-3T-ZN ceramics with 0.5 wt% of MnO, sintered at 1220 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 41.02, a Q×f value of 44,230 GHz (at 5.2 GHz), and τf value of +2.32 ppm/°C.  相似文献   

17.
The Zn1.8SiO3.8 (ZS) ceramics with BaCu(B2O5) (BCB) additive were synthesized by the conventional solid-state reaction route and the effect of BCB additive on the microwave dielectric properties of the ceramics was investigated. The results demonstrate that BCB could effectively decrease the sintering temperature from 1300?°C to 930?°C and does not induce obviously degradation of the microwave dielectric properties. The 6.wt% BCB added ZS ceramics exhibited a low sintering temperature (~ 930?°C) and excellent dielectric properties of εr =?6.79, Q×f =?33,648?GHz, and τf =??30?ppm/°C. To compensate the negative τf value of this system, TiO2 powders were introduced. Particularly when 10.wt% TiO2 was added, good microwave dielectric properties of εr=?8.175, Q×f=?21,252?GHz, and τf =?1.2?ppm/°C were obtained for the 6.wt% BCB added ZS ceramic sintered at 930?°C for 3?h. Moreover, BCB added ZS-TiO2 ceramics have a chemical compatibility with silver, which indicate that the BCB added ZS ceramics are promising candidate for LTCC applications.  相似文献   

18.
With the development of 5G technology, it would inevitably lead to the problem of energy consumption owing to the massive construction of 5G base stations and the increase in the number of antenna channels. Dielectric filters as the core component in the base station, the energy consumption was closely related to its insertion loss, which could be achieved by reducing the dielectric loss (tanδ = 1/Q) of microwave dielectric ceramics. In this work, in order to further enhance the Q × f value, the slowly cooling step process was innovatively introduced to the Ba(Mg1/3Ta0.675)O3 ceramic. The optimal microwave dielectric properties were obtained in Ba(Mg1/3Ta0.675)O3 ceramic with the step temperature of 1500 °C: εr = 24.767, Q × f = 298,051 GHz, τf = ?0.66 ppm/°C. Based on ultra-high Q Ba(Mg1/3Ta0.675)O3 ceramic, the hairpin dielectric filter with high integration and low insertion loss was designed and simulated. Compared with traditional RT/duroid5870 dielectric substrate, the circuit area was reduced by more than 6 times and the passband insertion loss (|S21| < 1 dB) was decreased by more than 50%. The current work could provide a solution for the low-power applications of microwave dielectric devices in 5G base stations.  相似文献   

19.
(Bi2-yCay)(Zn1/3 Ta2/3)2O7陶瓷的介电弛豫和介电性能   总被引:4,自引:1,他引:4  
沈波  刘艳平  姚熹 《硅酸盐学报》2006,34(2):237-242
研究了(Bi2-yCay)(Zn1/3Ta2/3)2O7(0≤y≤1)材料的组成、结构与介电性能.当Ca含量增加时,材料的相结构由单斜焦绿石相转变为立方焦绿石相.样品在20~85℃,1 MHz时的介电常数温度系数由72×10-6/℃逐渐增加到470×10-6/℃,然后降为-100×10-6/℃,样品在微波频率下的品质因数Q值从1 250逐渐降低至40.在-60~160℃,观测到(Bi1.2Ca0.8)(Zn1/3Ta2/3)2O7样品出现介电弛豫现象.随着Ca含量的增加,介电损耗的弛豫峰向高温移动.比较了同为立方结构相的(Bi2-yCay)(Zn1/3Ta2/3)2O7(0.7<y<1)和(Bi1.5Zn0.5)(Zn0.5·Ta1.5)O7介电弛豫温区移动的差异并分析了其形成原因.  相似文献   

20.
郭秀盈  肖谧  吴霞宛  张之圣 《硅酸盐学报》2005,33(11):1418-1421
采用传统的固相合成法制备了Ag(Nb0.8Ta0.2)O3(ANT)和Ag0.9A0.1(Nb0.8Ta0.2)O3(A=Li,Na,K)样品,并通过X射线衍射,扫描电镜和Raman光谱等手段对样品进行了表征。研究了Li^+,Na^+,K^+取代Ag(Nb0.8Ta0.2)O3中的少量Ag^+(摩尔比10%)对其介电性能的影响。结果表明:由于Li^+,K^+与Ag^+半径差较大,它们的取代样品中出现了钙钛矿相以外的杂相峰,与未取代样品(ANT)相比介电常数(ε)和介电损耗(tgδ)变大;Na^+取代样品的X射线衍射谱中只呈现单一的钙钛矿相特征峰.其ε,tgδ较未经取代样品(ANT)的值略有减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号