首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用热模拟试验法研究了变形温度(340~500℃)和应变速率(0.01~25 s-1)对均匀化态Mg-6Gd-1.2Y-0.53Zr合金动态再结晶(DRX)临界应变及体积分数的影响,通过构建热加工图优化了其热加工工艺参数范围。结果表明,在0.01~1 s-1的低应变速率下,该合金的动态再结晶(DRX)临界应变量随变形温度的升高而升高,而在10~25 s-1高应变速率下,DRX临界应变量随变形温度的升高而略微下降。应变速率及变形温度的升高都使DRX体积分数增大,在500℃、25 s-1条件下,合金的动态再结晶体积分数最高,达90.0%。根据构建的热加工图,当变形量在30%~80%之间时,较佳的热加工工艺区间为400~500℃、0.01~1 s-1以及420~500℃、10~25 s-1。在10~25 s-1应变速率下,当变形量为10%~80%时,合金最适宜的变形温度为460~500℃。  相似文献   

2.
借助Gleeble-3500热模拟试验机研究了Cu-15Ni-8Sn合金在变形温度为933~1083 K,应变速率为0.001~10 s-1条件下的热压缩变形行为,通过Arrhenius模型建立了合金的热压缩变形本构方程并对其准确性进行了验证,基于动态材料模型得到了合金的3D热加工图。结果表明:合金适宜的热加工区间为变形温度993~1083 K,应变速率0.01~0.1 s-1;在应变速率为0.01 s-1时,随着变形温度的升高,合金的位错密度逐渐降低,动态再结晶体积分数逐渐增加,小角度晶界逐渐转化为大角度晶界,动态再结晶产生的软化效果使得合金的变形抗力逐渐降低。  相似文献   

3.
为了研究Mg-Zn-Zr-Gd合金的热压缩变形行为,采用Gleeble-3500型热模拟试验机,在变形温度为300~400℃,变形速率为0.001~1 s-1条件下对合金进行热压缩实验。分析了在不同的热压缩条件下合金的真应力-真应变曲线,通过引入Z参数建立了相关流变应力本构方程,同时观察了合金的微观组织演变。结果表明:合金在热压缩变形过程中主要发生了动态再结晶,且合金的流变应力随着应变速率降低和温度升高而减小。在低变形温度或高应变速率下进行热压缩变形时,再结晶晶粒比较细小,但是动态再结晶进行不充分,动态再结晶仅仅发生在晶界处且分布不均匀,仍然存在原始大晶粒。随着变形温度的升高和应变速率的降低,再结晶区域明显增加,再结晶晶粒也逐渐长大。根据热加工图分析得到合金最佳的热加工成形工艺区域为:温度为350~400℃,应变速率为0.1~1 s-1。  相似文献   

4.
通过真空熔炼制备了Cu-1Ti-1Ni-0.1Mg合金,采用Gleeble-1500D数控动态-力学模拟试验机,在0.001~10 s-1应变速率和550~950℃变形温度下,对Cu-1Ti-1Ni-0.1Mg合金进行了热变形试验。在流变应力的基础上得到了合金的本构方程,绘制了其热加工图,分析了合金的微观组织演变和析出相类型。结果表明:Cu-1Ti-1Ni-0.1Mg合金的峰值应力随着变形温度的降低和应变速率的增加而增大。变形温度的升高对动态再结晶有促进作用,合金的主要析出相为CuNi2Ti。Cu-1Ti-1Ni-0.1Mg合金的最佳热加工区域为应变速率0.001~0.15 s-1,变形温度850~950℃。  相似文献   

5.
采用Gleeble-3800热模拟试验机对22Cr-32Fe-40Ni合金在变形温度为950~1150℃、应变速率为0.1~10 s-1范围内进行了热模拟压缩试验,对材料在热变形过程中的流变特性和组织演变规律进行了研究。结果表明,在变形温度高于1000℃或应变速率小于1 s-1时,材料的硬化效应和软化效应达到动态平衡;在变形温度低于1000℃或应变速率为10 s-1时,材料以动态再结晶为主的软化效应占主导作用。通过应变硬化率曲线确定了动态再结晶临界条件,基于温度补偿Arrhenius方程建立了22Cr-32Fe-40Ni合金的热变形本构方程,热变形激活能Q为438.339 kJ·mol-1。22Cr-32Fe-40Ni合金适宜的热加工区间为变形温度1040~1150℃,应变速率0.1~0.47 s-1。  相似文献   

6.
利用Gleeble-3800热模拟机研究Incoloy901高温合金在变形温度950~1150℃,应变速率0.005~1 s-1,真应变0.6下的热变形行为。结果表明:变形温度大于1000℃,应变速率大于0.01 s-1时,Incoloy901合金真应力-应变曲线呈现动态再结晶特征。根据应力-应变曲线构建Incoloy901合金的本构方程与热加工图,得出形变激活能Q=439.401 k J/mol,最佳热加工工艺为:变形温度1050~1150℃,应变速率0.005~0.1 s-1,在此工艺范围内合金的高温变形功率耗散系数η较高,可达37%,能获得较好的动态再结晶组织。  相似文献   

7.
针对一种新型粉末高温合金FGH4113A(WZ-A3)进行了一系列热压缩实验,探究了变形温度、应变速率、应变量对微观组织演化的影响规律,并提出了获得细小均匀γ+γ′双相晶粒组织的热变形参数。结果表明:在温度1100℃、应变速率0.1 s-1、真应变0.1~0.7范围内,应变增大有利于促进动态再结晶以及细化晶粒。随应变增加,γ’相体积分数先减小后增大,随后保持稳定,并且在热变形过程中γ’相形貌逐渐趋于球形。在温度1100℃、变形量50%、应变速率0.01~1 s-1范围内,应变速率增大能够提高动态再结晶程度并细化晶粒。应变速率由0.01~0.1 s-1增大至1 s-1时,由于绝热温升以及位错滑移加剧,γ’相体积分数减小约2%。在应变速率0.1s-1、变形量50%、温度1070~1160℃范围内,变形温度的提升有利于促进动态再结晶和晶粒长大。随着变形温度升高至1130℃,γ’相已大量溶解,钉扎晶界能力大幅减弱,平均晶粒尺寸增大至12.1μm。在变形温度1100℃、应变速率1 s  相似文献   

8.
采用Gleeble-3800型热模拟试验机研究了变形参数对Haynes 282合金热变形时流动应力的影响规律,建立了Haynes 282合金高温塑性变形时的热加工图。结果表明:在达到峰值应变后,当变形温度在1000℃及以下时,合金的软化速率一直大于硬化速率,应力持续下降;当变形温度大于1000℃时,加工硬化速率和再结晶软化速率达到动态平衡。合金热加工图包含两个危险区,危险区I:温度900~1000℃、应变速率0.1~10 s-1和危险区Ⅱ:温度1000~1200℃、应变速率1~10 s-1;热加工图中失稳区是由温度900~1000℃、应变速率0.1~10 s-1和温度1000~1150℃、应变速率0.1~1 s-1组成的区域;安全区对应的温度范围为1000~1200℃,应变速率为0.01~0.1 s-1,该区的功率耗散系数为0.34~0.44,是合适的热加工区。  相似文献   

9.
利用Gleeble-1500D热力模拟机对Cu-15Ni-8Sn合金进行热压缩试验,研究了该合金在变形温度700~900℃,应变速率为0.003~5 s-1,总变形量为60%下的热变形行为和热加工性能。结果表明:合金的流变应力随变形程度的增加先急剧增加到最大值后持续下降,流变应力峰值随温度升高而降低,随应变速率增加而增加。基于合金流变应力曲线关系分别构建了耦合应变的修正的Arrhenius双曲正弦模型和热加工图,并得到合金热变形激活能为195976 J·mol-1,试验范围内Cu-15Ni-8Sn合金最佳热加工参数:变形温度800~900℃,应变速率0.003~5 s-1。在较优工艺条件下,合金组织主要由动态再结晶晶粒和变形晶粒组成。  相似文献   

10.
为准确获得TC21钛合金塑性加工的变形特征和热加工条件,合理设计锻造工艺参数,利用Gleeble-3500热模拟机进行等温恒应变速率热压缩试验,研究了TC21钛合金在变形温度为830~1010℃、应变速率为0.01~10 s-1条件下的热变形行为,采用Arrhenius双曲线正弦函数推导出TC21钛合金本构方程。并基于动态材料模型(Dynamic Materials Model, DMM)建立了TC21钛合金的热加工图。结果表明,在本试验的变形条件下,该合金的流变应力随着变形温度的降低和应变速率的升高而增大。根据热加工图确定了合金的热加工安全区域为:变形温度为900~940℃、应变速率为0.01~0.05 s-1和变形温度为970~1010℃、应变速率为0.01~0.08 s-1。  相似文献   

11.
The hot deformation characteristics of as-forged Ti?3.5Al?5Mo?6V?3Cr?2Sn?0.5Fe?0.1B?0.1C alloy within a temperature range from 750 to 910 °C and a strain rate range from 0.001 to 1 s?1 were investigated by hot compression tests. The stress?strain curves show that the flow stress decreases with the increase of temperature and the decrease of strain rate. The microstructure is sensitive to deformation parameters. The dynamic recrystallization (DRX) grains appear while the temperature reaches 790 °C at a constant strain rate of 0.001 s?1 and strain rate is not higher than 0.1 s?1 at a constant temperature of 910 °C. The work-hardening rate θ is calculated and it is found that DRX prefers to happen at high temperature and low strain rate. The constitutive equation and processing map were obtained. The average activation energy of the alloy is 242.78 kJ/mol and there are few unstable regions on the processing map, which indicates excellent hot workability. At the strain rate of 0.1 s?1, the stress?strain curves show an abnormal shape where there are two stress peaks simultaneously. This can be attributed to the alternation of hardening effect, which results from the continuous dynamic recrystallization (CDRX) and the rotation of DRX grains, and dynamic softening mechanism.  相似文献   

12.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

13.
The hot compression deformation behavior of Cu–3Ti–0.1Zr alloy with the ultra-high strength and good electrical conductivity was investigated on a Gleeble–3500 thermal-mechanical simulator at temperatures from 700 to 850 °C with the strain rates between 0.001 and 1 s−1. The results show that work hardening, dynamic recovery and dynamic recrystallization occur in the alloy during hot deformation. The hot compression constitutive equation at a true strain of 0.8 is constructed and the apparent activation energy of hot compression deformation Q is about 319.56 kJ/mol. The theoretic flow stress calculated by the constructed constitutive equation is consistent with the experimental result, and the hot processing maps are established based on the dynamic material model. The optimal hot deformation temperature range is between 775 and 850 °C and the strain rate range is between 0.001 and 0.01 s−1.  相似文献   

14.
通过热压缩实验研究了ZL270LF铝合金在变形量为70%,温度为300~550 ℃,应变速率为 0.01~10 s-1范围的热变形行为,建立了流变应力本构方程模型,绘制出了二维热加工图,确定了最佳热加工区域,采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术研究了该合金的组织演变规律。结果表明:ZL270LF铝合金的流变应力随变形温度的升高和应变速率的降低而降低,热变形激活能为309.05 kJ/mol,最优热加工区为温度470~530 ℃、应变速率为0.01~1 s-1。该合金在热变形过程中存在3种不同的DRX机制,即连续动态再结晶(CDRX)、不连续动态再结晶(DDRX)和几何动态再结晶(GDRX),其中CDRX是ZL270LF铝合金动态再结晶的主要机制。  相似文献   

15.
通过获得镍钛形状记忆合金在应变速率(0.001~1 s-1)和变形温度(600~1000℃)下的压缩真实应力—应变曲线,研究镍钛形状记忆合金在热变形下的力学行为.通过显微组织演变研究镍钛形状记忆合金的动态回复和动态再结晶,获得应变速率、变形温度和变形程度对镍钛形状记忆合金的动态回复和动态再结晶的影响规律.镍钛形状记忆合金在600℃和700℃下,动态回复和动态再结晶共存,但在其他温度下表现出完全动态再结晶.增加变形温度或降低应变速率,导致较大的等轴晶粒.变形程度对镍钛形状记忆合金的动态再结晶具有重要的影响.在镍钛形状记忆合金的动态再结晶中存在临界变形程度,当大于临界变形程度时,较大的变形程度有助于获得细小的等轴再结晶晶粒.  相似文献   

16.
The flow behavior of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermo-mechanical equipment. Compression tests were performed in the temperature range of 340-500 °C and in the strain rate range of 0.001-10 s?1.The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature, and decreases with increasing temperature at a given imposed strain rate. The relationship between flow stress and strain rate and temperature was derived by analyzing the experimental data. The constitutive equation of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation can be described by the Arrhenius relationship of the hyperbolic sine form. The values of A, n, and α in the analytical expression of strain rate are fitted to be 1.49 × 1010 s?1, 7.504, and 0.0114 MPa?1, respectively. The hot deformation activation energy of the alloy during compression is 150.25 kJ/mol. The temperature and strain rate have great influences on microstructure evolution of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation. According to microstructure evolution, the dynamic flow softening is mainly caused by dynamic recovery and dynamic recrystallization in this present experiment.  相似文献   

17.
Hot deformation behaviors and microstructure evolution of Ti?3Al?5Mo?4Cr?2Zr?1Fe (Ti-35421) alloy in the β single field are investigated by isothermal compression tests on a Gleeble?3500 simulator at temperatures of 820?900 °C and strain rates of 0.001?1 s?1. The research results show that discontinuous yield phenomenon and rheological softening are affected by the strain rates and deformation temperatures. The critical conditions for dynamic recrystallization and kinetic model of Ti-35421 alloy are determined, and the Arrhenius constitutive model is constructed. The rheological behaviors of Ti-35421 alloys above β phase transformation temperature are predicted by the constitutive model accurately. The EBSD analysis proves that the deformation softening is controlled by dynamic recovery and dynamic recrystallization. In addition, continuous dynamic recrystallization is determined during hot deformation, and the calculation model for recrystallization grain sizes is established. Good linear dependency between the experimental and simulated values of recrystallized grain sizes indicates that the present model can be used for the prediction of recrystallized grain size with high accuracy.  相似文献   

18.
Hot deformation behavior of extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300–450 °C and strain rate range of 0.01–10 s?1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 °C and strain rate of 1 s?1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (>15°) was 34%. While increasing the deformation temperature to 400 °C and decreasing the strain rate to 0.1 s?1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy were in the deformation temperature range of 340–450 °C and the strain rate range of 0.01–0.1 s?1 with the power dissipation efficiency range of 38%–43%.  相似文献   

19.
60NiTi合金具有强度高、耐磨性好等一系列优异的性能。但由于它难热成型,因此大大限制了在工业领域的广泛应用。为了确定60NiTi合金最优的热加工工艺,研究了铸态60NiTi合金在750~1 050℃,0.01~1 s-1变形速率下的热变形行为,并采用包含Arrhenius项的Z参数法构建了高温变形本构方程。结果显示:仅在1 000℃、1 s-1速率下高温变形时60NiTi合金发生了明显的动态再结晶,温度升高能提高60NiTi合金的热成型性能。在高温(1 050℃)大变形速率下(1 s-1)加工60NiTi合金的热成型性能最好。  相似文献   

20.
The deformation behavior of as-forged Ti–43Al–9V–Y alloy was investigated by hot compression tests in the temperature range of 1100–1225 °C and strain rate range of 0.01–0.5 s−1. The results show that the alloy exhibits negative temperature sensitivity and positive strain rate sensitivity. The stress exponent (n = 3.02) and the apparent activation energy (Q = 342.27 kJ/mol) of the present alloy are lower than that of previous reported TiAl alloys, which suggests that the as-forged Ti–43Al–9V–Y alloy exhibits better deformability at low temperatures and high strain rates. A processing map for hot working was developed on the basis of a dynamic material model. The deformation mechanisms were analyzed by the processing map. The optimum processing condition at the strain of 0.6 is 1180–1210 °C/0.01–0.05 s−1. A crack-free Ti–43Al–9V–Y sheet was prepared by hot rolling at these optimized parameters. EBSD results show that dynamic recrystallization is more likely to occur for γ phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号