首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2022,48(13):18567-18578
In this study, SiC interphase was prepared via a precursor infiltration-pyrolysis process, and effects of dipping concentrations on the mechanical, high-temperature dielectric and microwave absorption properties of the SiCf/SiC/Mu composites had been investigated. Results indicated that different dipping concentrations influenced ultimate interfacial morphology. The SiC interphase prepared with 5 wt% PCS/xylene solution was smooth and homogeneous, and no bridging between the fiber monofilament could be observed. At the same time, SiC interphase prepared with 5 wt% PCS/xylene solution had significantly improved mechanical properties of the composite. In particular, the flexural strength of the composite prepared with 5 wt% PCS/xylene solution reached 281 MPa. Both ε′ and ε′′ of the SiCf/SiC/Mu composites were enhanced after preparing SiC interphase at room temperature. The SiCf/SiC/Mu composite prepared with 5 wt% PCS/xylene solution showed the maximum dielectric loss value of 0.38 at 10 GHz. Under the dual action of polarization mechanism and conductance loss, both ε′ and ε′′ of the SiCf/SiC/Mu composites enhanced as the temperature increased. At 700 °C, the corresponding bandwidth (RL ≤ ?5 dB) of SiCf/SiC/Mu composites prepared with 5 wt% PCS/xylene solution can reach 3.3 GHz at 2.6 mm. The SiCf/SiC/Mu composite with SiC interphase prepared with 5 wt% PCS/xylene solution is expected to be an excellent structural-functional material.  相似文献   

2.
Unidirectional (UD) silicon carbide (SiC) fiber-reinforced SiC matrix (UD SiCf/SiC) composites with CVI BN interphase were fabricated by polymer infiltration-pyrolysis (PIP) process. The effects of the anisotropic distribution of SiC fibers on the mechanical properties, thermophysical properties and electromagnetic properties of UD SiCf/SiC composites in different directions were studied. In the direction parallel to the axial direction of SiC fibers, SiC fibers bear the load and BN interphase ensures the interface debonding, so the flexural strength and the fracture toughness of the UD SiCf/SiC composites are 813.0 ± 32.4 MPa and 26.1 ± 2.9 MPa·m1/2, respectively. In the direction perpendicular to the axial direction of SiC fibers, SiC fibers cannot bear the load and the low interfacial bonding strengths between SiC fiber/BN interphase (F/I) and BN interphase/SiC matrix (I/M) both decrease the matrix cracking stress, so the corresponding values are 36.6 ± 6.9 MPa and 0.9 ± 0.5 MPa?m1/2, respectively. The thermal expansion behaviors of UD SiCf/SiC composites are similar to those of SiC fibers in the direction parallel to the axial direction of SiC fibers, and are similiar to those of SiC matrix in the direction perpendicular to the axial direction of SiC fibers. The total electromagnetic shielding effectiveness (EM SET) of UD SiCf/SiC composites attains 32 dB and 29 dB when the axial direction of SiC fibers is perpendicular and parallel to the electric field direction, respectively. The difference of conductivity in different directions is the main reason causing the different SET. And the dominant electromagnetic interference (EMI) shielding mechanism is absorption for both studied directions.  相似文献   

3.
《Ceramics International》2020,46(14):22297-22306
SiC fiber-reinforced SiC matrix (SiCf/SiC) composites are promising materials for high-temperature structural applications. In this study, KD-II SiC fiber bundles with a C/Si ratio of approximately 1.25 and an oxygen amount of 2.53%, were used as reinforcement. PyC interphase, PyC-SiC co-deposition interphase I and II, with different thicknesses, and SiC matrix were deposited into the SiC fiber bundles by using chemical vapor infiltration (CVI) to form SiCf/SiC mini composites. When the thickness of the interphase is approximately 1000 nm, the ultimate tensile stress and strain of SiCf/SiC mini composites with PyC-SiC co-deposition interphase I can reach 1120.0 MPa and 0.72%, respectively, which are significantly higher than those of SiCf/SiC mini composites with a PyC interphase (740.0 MPa, 0.87%) and PyC-SiC co-deposition interphase II (645.0 MPa, 0.54%). The effect of thicknesses and types of interphase on tensile fracture behavior of mini composites and then the fracture mechanism are discussed in detail.  相似文献   

4.
《Ceramics International》2020,46(9):13088-13094
Continuous silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites have promising applications in aero-engine due to their unique advantages, such as low density, high modulus and strength, outstanding high temperature resistance and oxidation resistance. As SiC fibers are main reinforcements in SiCf/SiC composites, the crystallization rate and initial damage degree of SiC fibers are seriously influenced by preparation temperatures of SiCf/SiC composites, namely mechanical properties of SiC fibers and SiCf/SiC composites are influenced by preparation temperatures. In this paper, KD-II SiC fibers were woven into 3D4d preforms and SiC matrix was fabricated by PIP process at 1100 °C, 1200 °C, 1400 °C and 1600 °C. Digital image correlation (DIC) method was adopted to measure the uniaxial tensile properties of these SiCf/SiC composites. In addition, finite element method (FEM) based on representative volume element (RVE) was adopted to predict the mechanical properties of SiCf/SiC composites. The good agreements between numerical results and experimental results of uniaxial tensile tests verified the validity of the RVE. In last, the transverse tensile, transverse shear, uniaxial shear properties were predicted by this method. The predicted results illustrated that axial tensile, transverse tensile and axial shear properties were greatly influenced by the preparation temperatures of SiCf/SiC composites while transverse shear properties were not significantly various. And the mechanical properties of SiCf/SiC composites peaked at 1200 °C among these four temperatures while their values reached their lowest points at 1600 °C because of thermal damage and brittle failure of SiCf/SiC composites.  相似文献   

5.
《Ceramics International》2017,43(5):4166-4174
Unidirectional SiCf/SiC minicomposites with SiC matrix derived by polymer-impregnation pyrolysis (PIP), reinforced with SiC fibers coated with zirconium or hafnium germanate were fabricated. Microdebonding indentation tests for SiCf/SiC composites with one- and multilayered germanate interphase were performed. Interfacial shear stress depending on the number of germanate interfacial layers and morphology was determined. The microstructure of the minicomposites and indented fracture surfaces were studied by scanning electron microscopy (SEM). It was stated that an increase in the number of interfacial coatings leads to a decrease in the interfacial frictional stress in SiCf/SiC minicomposites with germanate interphases. The key factor of interphase weakening is the formation of a weak interlayer bonding within the interphase but not germanate layered crystal structure itself. Thus, bonding at the fiber/matrix boundary could be regulated by the number of layers of ZrGeO4 or HfGeO4 in the interphase zone.  相似文献   

6.
SiC/SiC composites prepared by liquid silicon infiltration (LSI) have the advantages of high densification, matrix cracking stress and ultimate tensile strength, but the toughness is usually insufficient. Relieving the residual microstress in fiber and interphase, dissipating crack propagation energy, and improving the crystallization degree of interphase can effectively increase the toughness of the composites. In this work, a special SiC particles and C (SiCP +C) double-cladding layer is designed and prepared via the infiltration of SiCP slurry and chemical vapor infiltration (CVI) of C in the porous SiC/SiC composites prepared by CVI. After LSI, the SiC generated by the reaction of C with molten Si combines with the SiCP to form a layered structure matrix, which can effectually relieve residual microstress in fiber and interphase and dissipate crack propagation energy. The crystallization degree of BN interphase is increased under the effects of C-Si reaction exotherm. The as-received SiC/SiC composites possess a density of 2.64 g/cm3 and a porosity of 6.1%. The flexural strength of the SiC/SiC composites with layered structure matrix and highly crystalline BN interphase is 577 MPa, and the fracture toughness reaches up to 37 MPa·m1/2. The microstructure and properties of four groups of SiC/SiC composites prepared by different processes are also investigated and compared to demonstrate the effectiveness of the SiCP +C double-cladding layer design, which offers a strategy for developing the SiC/SiC composites with high performance.  相似文献   

7.
SiC coatings were successfully synthesized on SiC fibers by precursor infiltration and pyrolysis (PIP) method using polycarbosilane (PCS) as precursor. The morphology of as-fabricated coatings was observed by SEM, and its structure was characterized by XRD and Raman spectrum. The SiC fiber reinforced chemical vapor infiltration SiC (SiCf/CVI-SiC) composites with PIP-SiC coatings as interphase were fabricated. And, the effects of PIP-SiC interphase on mechanical properties of composites were investigated. The experimental results point out that the coating is smooth and there is little bridging between fibers. The coating is amorphous with SiC and carbon micro crystals. The flexural strength of composites with and without PIP-SiC interphase is 220 and 100 MPa, respectively. And the composites with PIP-SiC interphase obviously exhibit a toughened fracture behavior. The oxidation resistance of composites with PIP-SiC interphase is much better than that of composites with pyrolytic carbon (PyC) interphase.  相似文献   

8.
《Ceramics International》2016,42(10):12239-12245
In this paper, unidirectional SiC fiber (SiCf) reinforced geopolymer composites (SiCf/geopolymer) were prepared and effects of fiber contents on the microstructure and mechanical properties of the composites in different directions were investigated. The XRD results showed that addition of SiCf retarded geopolymerization process of geopolymer matrix by weakening the typical amorphous hump. SiCf in all the composites were well infiltrated by geopolymer matrix, but microcracks which were perpendicular to the fiber axial direction were noted in the interface area due to the thermal shrinkage of matrix during the curing process. With the increases in fiber contents, although Young's modulus of the composites increased continuously, flexural strength, fracture toughness and work of fracture increased at first, reached their peak values and then decreased. And when fiber content was 20 vol%, the composites showed the highest flexural strength, fracture toughness and work of fracture, which were 14.2, 15.2 and 81.6 times as high as those of pristine geopolymer, respectively, indicating significant strengthening and toughening effects from SiCf. Meanwhile, SiCf/geopolymer composites failed in different failure modes in the different directions, i.e., tensile failure mode in the x direction (in-plane and perpendicular to the fiber axial direction) and shear failure mode in the z direction (laminate lay-up direction).  相似文献   

9.
《Ceramics International》2016,42(6):6800-6806
2D KD-1 SiC fiber fabrics were employed to fabricate SiCf/SiC composites by an improved polymer infiltration and pyrolysis (PIP) process, combined with cold isostatic pressing (CIP). The effect of CIP process on the microstructure, mechanical and dielectric properties of SiCf/SiC composites was investigated. The infiltration efficiency was remarkably improved with the introduction of CIP process. Compared to vacuum infiltration, the CIP process can effectively increase the infiltrated precursor content and decrease the porosity resulting in a dense matrix. Thus SiCf/SiC composites with high density of 2.11 g cm−3 and low porosity of 11.3% were obtained at 100 MPa CIP pressure, together with an increase of the flexural strength of the composites from 89 MPa to 213 MPa. Real part (ε′) and the imaginary part (ε″) of complex permittivity of SiCf/SiC composites increase and vary from 11.7-i9.7 to 15.0-i12.8 when the CIP pressure reaches 100 MPa.  相似文献   

10.
《Ceramics International》2021,47(19):26971-26977
The SiCf/SiC composites have been manufactured by a hybrid route combining chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) techniques. A relatively low deposition rate of CVI SiC matrix is favored ascribing to that its rapid deposition tends to cause a ‘surface sealing’ effect, which generates plenty of closed pores and severely damages the microstructural homogeneity of final composites. For a given fiber preform, there exists an optimized value of CVI SiC matrix to be introduced, at which the flexural strength of resultant composites reaches a peak value, which is almost twice of that for composites manufactured from the single PIP or CVI route. Further, this optimized CVI SiC amount is unveiled to be determined by a critical thickness t0, which relates to the average fiber distance in fiber preforms. While the deposited SiC thickness on fibers exceeds t0, closed pores will be generated, hence damaging the microstructural homogeneity of final composites. By applying an optimized CVI SiC deposition rate and amount, the prepared SiCf/SiC composites exhibit increased densities, reduced porosity, superior mechanical properties, increased microstructural homogeneity and thus reduced mechanical property deviations, suggesting a hybrid CVI and PIP route is a promising technique to manufacture SiCf/SiC composites for industrial applications.  相似文献   

11.
In this study, the high-content SiCnw reinforced SiC ceramic matrix composites (SiCnw/SiC CMC) were successfully fabricated by hot pressing β-SiC and sintering additive (Al2O3-Y2O3) with boron nitride interphase modification SiCnw. The effects of sintering additive content and mass fraction (5–25 wt%) of SiCnw on the density, microstructure, and mechanical properties of the composites were investigated. The results showed that with the increase of sintering additives from 10 wt% to 12 wt%, the relative density of the SiCnw/SiC CMC increased from 97.3% to 98.9%, attributed to the generated Y3Al5O12 (YAG) liquid phase from the Al2O3-Y2O3 that promotes the rearrangement and migration of SiC grains. The comprehensive performance of the obtained composite with 15 wt% SiCnw possessed the optimal flexural strength and fracture toughness of 524 ± 30.24 MPa and 12.39 ± 0.49 MPa·m1/2, respectively. Besides, the fracture mode of the composites with 25 wt% SiCnw content revealed a pseudo-plastic fracture behavior. It concludes that the 25 wt% SiCnw/SiC CMC was toughened by the fiber pull-outs, debonding, bridging, and crack deflection that can consume plenty of fracture energy. The strategy of SiC nanowires worked as a main bearing phase for the fabrication of SiC/SiC CMC providing critical information for understanding the mechanical behavior of high toughness and high strength SiC nanoceramic matrix composites.  相似文献   

12.
《Ceramics International》2022,48(7):9483-9494
In this work, quasi-isotropic chopped carbon fiber-reinforced pyrolytic carbon and silicon carbide matrix (Cf/C–SiC) composites and chopped silicon carbide fiber-reinforced silicon carbide matrix (SiCf/SiC) composites were prepared via novel nondamaging method, namely airlaid process combined with chemical vapor infiltration. Both composites exhibit random fiber distribution and homogeneous pore size. Young's modulus of highly textured pyrolytic carbon (PyC) matrix is 23.01 ± 1.43 GPa, and that of SiC matrix composed of columnar crystals is 305.8 ± 9.49 GPa in Cf/C–SiC composites. Tensile strength and interlaminar shear strength of Cf/C–SiC composites are 52.56 ± 4.81 and 98.16 ± 24.62 MPa, respectively, which are both higher than those of SiCf/SiC composites because of appropriate interfacial shear strength and introduction of low-modulus and highly textured PyC matrix. Excellent mechanical properties of Cf/C–SiC composites, particularly regarding interlaminar shear strength, are due to their quasi-isotropic structure, interfacial debonding, interfacial sliding, and crack deflection. In addition to the occurrence of crack deflection at the fiber/matrix interface, crack deflection in Cf/C–SiC composites takes also place at the interface between PyC–SiC composite matrix and the interlamination of multilayered PyC matrix. Outstanding mechanical properties of as-prepared Cf/C–SiC composites render them potential candidates for application as thermal structure materials under complex stress conditions.  相似文献   

13.
SiCf/SiC composites with silicon oxycarbide (SiOC) interphase were successfully prepared using silicone resin as interphase precursor for dip-coating process and polycarbosilane as matrix precursor for PIP process assisted with hot mold pressing. The effects of SiOC interphase on mechanical and dielectric properties were investigated. XRD and Raman spectrum results show that SiOC interphase is composed of silicon oxycarbide and free carbon with a relatively low crystalline degree. The surface morphology of SiC fibers with SiOC interphase is smooth and homogeneous observed by SEM. The flexural strength and failure displacement of SiCf/SiC composites with SiOC interphase vary with the thickness of interphase and the maximum value of flexural strength is 289 MPa with a failure displacement of 0.39 mm when the thickness of SiOC interphase is 0.25 µm. The complex permittivity of the composites increases from 8.8-i5.7 to 9.8-i8.3 with the interphase thicker.  相似文献   

14.
The effects of the SiC nanowires (SiCNWs) and PyC interface layers on the mechanical and anti-oxidation properties of SiC fiber (SiCf)/SiC composites were investigated. To achieve this, the PyC layer was coated on the SiCf using a chemical vapour infiltration (CVI) method. Then, SiCNWs were successfully coated on the surface of SiCf/PyC using the electrophoretic deposition method. Finally, a thin PyC layer was coated on the surface of SiCf/PyC/SiCNWs. Three mini-composites, SiCf/PyC/SiC, SiCf/PyC/SiCNWs/SiC, and SiCf/PyC/SiCNWs/PyC/SiC, were fabricated using the typical precursor infiltration and pyrolysis method. The morphologies of the samples were examined using scanning electron microscopy and energy dispersive X-ray spectrometry. Tensile and single-fibre push-out tests were carried out to investigate the mechanical performance and interfacial shear strength of the composites before and after oxidization at 1200 °C. The results revealed that the SiCf/PyC/SiCNWs/SiC composites showed the best mechanical and anti-oxidation performance among all the composites investigated. The strengthening and toughening is mainly achieved by SiCNWs optimization of the interfacial bonding strength of the composite and its own nano-toughening. On the basis of the results, the effects of SiCNWs on the oxidation process and retardation mechanism of the SiCf/SiC mini-composites were investigated.  相似文献   

15.
《Ceramics International》2022,48(2):1532-1541
In order to improve the degree of matrix densification of SiCf/SiC composites based on liquid silicon infiltration (LSI) process, the microstructure and mechanical properties of composites according to various pyrolysis temperatures and melt infiltration temperatures were investigated.Comparing the microstructures of SiCf/C carbon preform by a one-step pyrolysis process at 600 °C and two-step pyrolysis process at 600 and 1600 °C, the width of the crack and microcrack formation between the fibers and matrix in the fiber bundle increased during the two-step pyrolysis process. For each pyrolysis process, the density, porosity, and flexural strength of the SiCf/SiC composites manufactured by the LSI process at 1450–1550 °C were measured to evaluate the degree of matrix densification and mechanical properties. As a result, the SiCf/SiC composite that was fabricated by the two-step pyrolysis process and LSI process showed an 18% increase in density, 16%p decrease in porosity, and 150% increase in flexural strength on average compared to the composite fabricated by the one-step pyrolysis process.In addition, among the SiCf/SiC specimens fabricated by the LSI process after the same two-step pyrolysis process, the specimen that underwent the LSI process at 1500 °C showed 30% higher flexural strength on average than those at 1450 or 1550 °C. Furthermore, under the same pyrolysis temperature, the mechanical strength of SiCf/SiC specimens in which the LSI process was performed at 1500 °C was higher than that of the 1550 °C although both porosity and density were almost similar. This is because the mechanical properties of the Tyranno-S grade SiC fibers degraded rapidly with increasing LSI process temperature.  相似文献   

16.
Continuous carbon fiber (Cf) reinforced silicon carbide (SiC) matrix composite (Cf/SiC) was processed through hot pressing (HP) using polycarbosilane (PCS) in matrix and polysilazane in interphase regions as polymer binders. HP experiments were conducted at 4 MPa, 1200 °C and 1 h; followed by PCS polymer impregnation and pyrolysis (PIP) at 1200 °C under vacuum. The BN/SiC-Si3N4 interphase formed on the Cf cloth during BN dispersed polysilazane polymer coating and pyrolysis. The influence of PCS quantity during HP experiments on Cf/SiC composites was studied. Results suggest that sintering of SiC matrix in Cf/SiC composite improves by increasing PCS content during HP; however, high PCS content increases the liquidity of SiC-PCS mixture to flow out of the composite structure. The Cf/SiC composites with relative density ranging from 79 to 83% and flexural strength from 67 to 138 MPa was achieved.  相似文献   

17.
SiCf/SiC composites with BN interface were prepared through isothermal-isobaric chemical vapour infiltration process. Room temperature mechanical properties such as tensile, flexural, inter-laminar shear strength and fracture toughness (KIC) were studied for the composites. The tensile strength of the SiCf/SiC composites with stabilised BN interface was almost 3.5 times higher than that of SiCf/SiC composites with un-stabilised BN interphase. The fracture toughness is similarly enhanced to 23 MPa m1/2 by stabilisation treatment. Fibre push-through test results showed that the interfacial bond strength between fibre and matrix for the composite with un-stabilised BN interface was too strong (>48 MPa) and it has been modified to a weaker bond (10 MPa) due to intermediate heat treatment. In the case of composite in which BN interface was subjected to thermal treatment soon after the interface coating, the interfacial bond strength between fibre and matrix was relatively stronger (29 MPa) and facilitated limited fibre pull-out.  相似文献   

18.
《Ceramics International》2015,41(8):9957-9965
A single-layer radar-absorbing structure in the X-band (8.2 GHz to 12.4 GHz) was designed and fabricated by blending multi-walled carbon nanotubes (MWCNTs) with the binder matrix of SiC fiber/aluminum phosphate matrix (SiCf/AlPO4) composite. The SiC interphase was successfully prepared on SiC fibers by a precursor infiltration and pyrolysis (PIP) method. The morphology of as-received interphase was observed by SEM, and its structure was characterized by XRD and Raman spectrum. The effects of PIP–SiC interphase on the mechanical and dielectric properties of the composite were investigated. The influence of MWCNTs content on the dielectric and microwave-absorption properties of coated SiCf/AlPO4 composite was discussed. When the content of MWCNTs was between 1.5 wt% and 3.5 wt% and the composite thickness is in the range of 2.5–3.5 mm, the SiCf/AlPO4 composite achieved excellent absorbing wave property in X-band.  相似文献   

19.
To understand the microscale toughening mechanism, the crack propagation, and stress–strain response of unidirectional SiCf/SiC composites with h-BN interphase under transverse and longitudinal tension are investigated by a promising micromechanical phase field (PF) method along with representative volume element. Of much interest, the calculation results are well consistent with the available experimental results. With a strong dependence on the interphase strength, the toughening mechanisms during crack propagation are well presented, for example, fiber pull-out, crack deflection, and interphase debonding. Furthermore, the longitudinal tensile strength of SiCf/SiC composites increases with decreasing the interphase strength, where only a weak enough interphase can result in a significant crack deflection by its cracking. In particular, the ratio of the interphase strength along fibers to the matrix strength should be less than 1.254 to ensure crack deflection in the interphase and fiber pull-out. Moreover, the transverse tensile strength of SiCf/SiC composites reaches a maximum with increasing the interphase thickness into the range of 0.25–0.5 µm.  相似文献   

20.
To improve the oxidation resistance of SiC composites at high temperature, the feasibility of using Ti3SiC2 coated via electrophoretic deposition (EPD) as a SiC fiber reinforced SiC composite interphase material was studied. Through fiber pullout, Ti3SiC2, due to its lamellar structure, has the possibility of improving the fracture toughness of SiCf/SiC composites. In this study, Ti3SiC2 coating was produced by EPD on SiC fiber; using Ti3SiC2‐coated SiC fabric, SiCf/SiC composite was fabricated by hot pressing. Platelet Ti3SiC2 powder pulverized into nanoparticles through high‐energy wet ball milling was uniformly coated on the SiC fiber in a direction in which the basal plane of the particles was parallel to the fiber. In a 3‐point bending test of the SiCf/SiC composite using Ti3SiC2‐coated SiC fabric, the SiCf/SiC composite exhibited brittle fracture behavior, but an abrupt slope change in the strength‐displacement curve was observed during loading due to the Ti3SiC2 interphase. On the fracture surface, delamination between each layer of SiC fabric was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号