共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2017,43(11):8475-8481
ZrC-based composites were consolidated from ZrC and TiB2 powders by the Spark Plasma Sintering (SPS) technique at 1685 °C and 1700 °C for 300 s under 40-50-60 MPa. Densification, crystalline phases, microstructure, mechanical properties and oxidation behavior of the composites were investigated. The sintered bodies were composed of a (Zr,Ti)C solid solution and a ZrB phase. The densification behaviors of the composites were improved by increasing the TiB2 content and applied pressure. The highest value of hardness, 21.64 GPa, was attained with the addition of 30 vol% TiB2. Oxidation tests were performed at 900 °C for 2 h and the formation of ZrO2, TiO2 and B2O3 phases were identified by using XRD. 相似文献
2.
《Journal of the European Ceramic Society》2021,41(13):6281-6289
Boron carbide composites with 10 vol.% TiB2 were prepared by reactive sintering of B4C, TiO2, and carbon black powder mixture at the temperature of 1800 °C, under a pressure of 70 MPa in a vacuum. The combined effects of electric current and in-situ reactions led to a significant overheating of the central part of the sample, while no overheating was observed for hot press and non-reactive SPS processes. A lower electrical resistivity of TiB2 produced a significant Joule heating of boron carbide, leading to its partial decomposition to form gaseous boron and graphene platelets. Homogenous, fully dense and graphene-free samples were obtained when employing an insulating Al2O3 paper during reactive SPS. A short dwell time (30 s after a degassing step of 6 min) and the uniform distribution of fine TiB2 grains were the main advantages of isolated SPS over the reactive hot press and SPS processes, respectively. 相似文献
3.
《Journal of the European Ceramic Society》2021,41(13):6290-6301
In this study, monolithic B4C and B4C-based ceramics incorporating FeNiCoCrMo dual-phase (FCC and BCC) high entropy alloys (HEAs) were produced by spark plasma sintering (SPS). The effect of additives on the densification behavior, mechanical properties, microstructures, and phase evaluation of the samples were investigated. X-ray analysis confirmed the existence of FCC structured HEA and depletion of BCC structured HEA, after high-temperature reaction between B4C-HEAs. The addition of HEAs enhanced the densification behavior by liquid phase sintering. Furthermore, hardness and fracture toughness values of the samples increased with increasing HEAs content. Fracture toughness and hardness values for all composites were higher than the monolithic B4C. A combination of the highest density (∼99.22 %) and the best mechanical properties (32.3 GPa hardness and 4.53 MPa m1/2 fracture toughness) was achieved with 2.00 vol.% HEA addition. 相似文献
4.
《Ceramics International》2017,43(14):11182-11188
The effects of sintering temperature, heating rate, and holding time on the density and hardness of the spark plasma sintered B4C were investigated. Experimental results are compared with the predictions from computational thermodynamics. It is explained how the choice of sintering parameters can affect the mechanical properties of the sintered samples. The fundamental mechanisms of how the sintering parameters affect the properties of the sintered B4C are discussed with the sintering experiments and the predictions from the CALPHAD (Calculation of Phase Diagrams) approach. The effect of the number of graphite foil layers to pack the powder was also investigated. It is proposed that increasing the number of graphite foil layers may increase the driving force for the C-B2O3 reaction to proceed. Higher density and hardness is thus achieved with the removal of free carbon and B2O3 from the sample. 相似文献
5.
《Journal of the European Ceramic Society》2023,43(8):3053-3061
The traditional way of densifying high-melting-point ceramics at high temperatures with long soaking time leads to severe grain coarsening, which degrades the mechanical properties of ceramics. Here, highly dense (∼98%) zirconium carbide (ZrC) ceramics with limited grain growth were obtained by spark plasma sintering (SPS) at relatively low temperatures, 1900 ℃, with a high pressure up to 200 MPa in a reliable carbon-fiber-reinforced carbon composite (Cf/C) mold. Subgrains and high-density dislocations formed in the high-pressure sintered ceramics. The hardness and fracture toughness of the prepared highly dense ZrC ceramics reached 20.53 GPa and 2.70 MPa·m1/2, respectively. The densification mechanism was mainly plastic deformation under high pressure. In addition, ZrC ceramics sintered at high pressure possessed a high dislocation density of 7.30 × 1012 m−2, which was suggested to contribute to the high hardness. 相似文献
6.
A comparative study has been carried out on densification, microstructure, and creep with oxide-scale formation in ZrB2-20 vol.% SiC-(7, 10 or 14 vol.%) LaB6 composite containing B4C and C as additives, and prepared by spark plasma sintering at 1800 °C under 70 MPa ram pressure. Addition of LaB6 has promoted densification of composites by scavenging oxygen impurity, thereby increasing their hardness. Constant load compressive creep tests at 1300 °C under 47 and 78 MPa stresses have shown the lowest creep rate in the 10 vol.% LaB6 composite. The stress exponents obtained for composites having 10 vol.% LaB6 (~1.3 ± 0.1) and 14 vol.% LaB6 (~2.6 ± 0.2) suggest respectively, grain boundary diffusion with intergranular glassy phase formation and dislocation glide as operating mechanisms. Intergranular cracking caused by grain boundary sliding appears as the damage mechanism. Oxide scales formed during creep exhibit greater thickness and defect concentration than those by isothermal exposure at 1300 °C within similar duration. 相似文献
7.
W.S. Rubink V. Ageh H. Lide N.A. Ley M.L. Young D.T. Casem E.J. Faierson T.W. Scharf 《Journal of the European Ceramic Society》2021,41(6):3321-3332
Spark plasma sintering (SPS) was employed to consolidate powder specimens consisting of B4C and various B4C-TiB2 compositions. SPS allowed for consolidation of pure B4C, B4C-13 vol.%TiB2, and B4C-23 vol.%TiB2 composites achieving ≥99 % theoretical density without sintering additives, residual phases (e.g., graphite), and excessive grain growth due to long sintering times. Electron and x-ray microscopies determined homogeneous microstructures along with excellent distribution of TiB2 phase in both small and larger-scaled composites. An optimized B4C-23 vol.%TiB2 composite with a targeted low density of ~3.0 g/cm3 exhibited 30–35 % increased hardness, fracture toughness, and flexural bend strength compared to several commercial armor-grade ceramics, with the flexural strength being strain rate insensitive under quasistatic and dynamic loading. Mechanistic studies determined that the improvements are a result of a) no residual graphitic carbon in the composites, b) interfacial microcrack toughening due to thermal expansion coefficient differences placing the B4C matrix in compression and TiB2 phase in tension, and c) TiB2 phase aids in crack deflection thereby increasing the amount of intergranular fracture. Collectively, the addition of TiB2 serves as a toughening and strengthening phase, and scaling of SPS samples show promise for the manufacture of ceramic composites for body armor. 相似文献
8.
《应用陶瓷进展》2013,112(7):394-398
Abstract Abstract Highly densified Al2O3-TiC-Ti3SiC2 composites were fabricated by spark plasma sintering technique and subsequently characterised. From fracture surface observation, it is found that Al2O3 is 0·2-0·4?μm, TiC is 1-1·5?μm and Ti3SiC2 is 1·5-5?μm in grain size. With the increase in Ti3SiC2 volume contents, Vickers hardness of the composites decreases because of the low hardness of monolithic Ti3SiC2. The fracture toughness rises remarkably when the contents of Ti3SiC2 increase, which is attributed to the pullout and microplastic deformation of Ti3SiC2 grains. At the same time, the flexural strength of the composites shows a considerable improvement as well. The electrical conductivity rises significantly as the Ti3SiC2 contents increase because of the formation of Ti3SiC2 network and the increase in conductive phase contents. 相似文献
9.
Mei Zhang Tiechui Yuan Ruidi Li Siyao Xie Minbo Wang Qigang Weng 《Ceramics International》2018,44(4):3571-3579
Micron-sized boron carbide (B4C) powders were subjected to spark plasma sintering (SPS) under temperature ranging from 1700 °C to 2100 °C for a soaking time of 5, 10 and 20 min and their densification kinetics was determined using a creep deformation model. The densification mechanism was interpreted on the basis of the stress exponent n and the apparent activation energy Qd from Harrenius plots. Results showed that within the temperature range 1700–2000 °C, creep deformation which was controlled by grain-boundary sliding or by interface reaction contributed to the densification mechanism at low effective stress regime (n = 2,Qd = 459.36 kJ/mol). While at temperature higher than 2000 °C or at high stress regime, the dominant mechanism appears to be the dislocation climb (n = 6.11). 相似文献
10.
《Ceramics International》2017,43(11):8190-8194
Bulk boron carbide (B4C) ceramics was fabricated from a boron and carbon mixture by use of one-step reactive spark plasma sintering (RSPS). It was also demonstrated that preliminary high-energy ball milling (HEBM) of the B+C powder mixture leads to the formation of B/C composite particles with enhanced reactivity. Using these reactive composites in RSPS permits tuning of synthesized B4C ceramic microstructure. Optimization of HEBM + RSPS conditions allows rapid (less than 30 min of SPS) fabrication of B4C ceramics with porosity less than 2%, hardness of ~35 GPa and fracture toughness of ~ 4.5 MPa m 1/2 相似文献
11.
《Ceramics International》2020,46(9):13685-13694
The densification behavior and toughening mechanisms of ZrB2-based composites with in-situ formed ZrC were investigated. The composites were spark plasma sintered at 1700 °C for 7 min under the applied pressure of 40 MPa. Metallic zirconium and graphite flakes were used as precursors to achieve ZrC reinforcement. Microstructural and phase analyses as well as mechanical characterizations were carried out on the near fully-dense composite samples. Results indicated ZrC as the only secondary phase in composite with 5 vol% of metallic Zr and graphite flakes. However, higher volume fractions of precursor materials led to the formation of ZrO2 as the dominant secondary phase. Whereas decreasing trend of the hardness number versus volume fraction of the precursors was observed, the highest indentation fracture toughness was achieved in sample with 15 vol% metallic Zr/graphite flakes. Finally, the formation of secondary phases and their effects on densification, and mechanical behavior of the composites were discussed. 相似文献
12.
《Journal of the European Ceramic Society》2022,42(5):2004-2014
Homogenous distribution of whiskers in the ceramic matrix is difficult to be achieved. To solve this problem, B4C-SiCw powder mixtures were freeze dried from a slurry dispersed by cellulose nanofibrils (CellNF) in this work. Dense B4C ceramics reinforced with various amounts of SiCw up to 12 wt% were consolidated by spark plasma sintering (SPS) at 1800 °C for 10 min under 50 MPa. During this process, CellNF was converted into carbon nanostructures. As iron impurities exist in the starting B4C and SiCw powders, both thermodynamic calculations and microstructure observations suggest the dissolution and precipitation of SiCw in the liquids composed of Fe-Si-B-C occurred during sintering. Although not all the SiCw grains were kept in the final ceramics, B4C-9 wt% SiCw ceramics sintered at 1800 °C still exhibit excellent Vickers hardness (35.5 ± 0.8 GPa), flexural strength (560 ± 9 MPa) and fracture toughness (5.1 ± 0.2 MPa·m1/2), possibly contributed by the high-density stacking faults and twins in their SiC grains, no matter in whisker or particulate forms. 相似文献
13.
《Ceramics International》2019,45(13):16288-16296
A near fully dense mullite-TiB2-CNTs hybrid composite was prepared successfully trough spark plasma sintering. 1 wt%CNT and 10 wt%TiB2 were mixed with nano-sized mullite powders using a high energy mixer mill. Spark plasma sintering was carried out at 1350 °C under the primary and final pressure of 10 MPa and 30 MPa, respectively. XRD results showed mullite and TiB2 as dominant crystalline phases accompanied by tiny peaks of alumina. The microstructure of prepared composites demonstrated uniform distribution of TiB2 reinforcements in mullite matrix without any pores and porosities as a result of near fully densified spark plasma sintered composite. The fracture surface of composite revealed a proper bonding of TiB2 with mullite matrix and also areas with CNTs tunneling and superficies as a result of pulling-out phenomenon. The flexural strength of 531 ± 28 MPa, Vickers harness of 18.31 ± 0.3 GPa, and fracture toughness of 5.46 ± 0.12 MPa m−1/2 were achieved for prepared composites as the measured mechanical properties. 相似文献
14.
《Journal of the European Ceramic Society》2017,37(1):393-397
Spark plasma sintering of TiB2–boron ceramics using commercially available raw powders is reported. The B4C phase developed during reaction-driven consolidation at 1900 °C. The newly formed grains were located at the grain junctions and the triple point of TiB2 grains, forming a covalent and stiff skeleton of B4C. The flexural strength of the TiB2–10 wt.% boron ceramic composites reached 910 MPa at room temperature and 1105 MPa at 1600 °С. Which is the highest strength reported for non-oxide ceramics at 1600 °C. This was followed by a rapid decrease at 1800 °C to 480–620 MPa, which was confirmed by increased number of cavitated titanium diboride grains observed after flexural strength tests. 相似文献
15.
Microstructures of ZrB2 ceramics consolidated by hot-pressing and spark plasma sintering were investigated by transmission electron microscopy (TEM), combining energy dispersive X-ray spectroscopy (EDX). The microstructures of both ceramics were compared. Amount of impurities was lower for ZrB2 consolidated by spark plasma sintering than for hot-pressed ZrB2. In particular, oxygen impurity was not detected even at the grain-boundaries in ZrB2 consolidated by spark plasma sintering. The cleaning effect generated on the powder surfaces during spark plasma sintering cycle was displayed. In addition, dislocations were present only in the spark plasma sintered ZrB2 ceramic, as a result of localized high stresses. 相似文献
16.
《Journal of the European Ceramic Society》2023,43(5):1880-1886
Polycrystalline Mo4Y2Al3B6 ceramic (92.84 wt% Mo4Y2Al3B6 and 7.16 wt% MoB) was prepared by spark plasma sintering at 1250 ℃ under 30 MPa using Mo, Y, Al, and B as starting materials. The dense sample obtained has a high relative density of 96.6 %. The average thermal expansion coefficient is 8.38 × 10?6 K?1 in the range of 25–1000 ℃. The thermal diffusivity decreases from 6.50 mm2/s at 25 °C to 4.33 mm2/s at 800 °C. The heat capacity, thermal conductivity, and electrical conductivity are 0.30 J·g?1·K?1, 11.73 W·m?1·K?1, and 0.66 × 106 Ω?1·m?1 at 25 °C, respectively. Vickers hardness with increasing load in the range of 10–300 N at room temperature decreases from 10.82 to 9.49 GPa, and the fracture toughness, compressive strength, and flexural strength are 5.14 MPa·m1/2, 1255.14 MPa, and 384.82 MPa, respectively, showing the promising applications as structural-functional ceramics. 相似文献
17.
Rajath Alexander T.S.R. Ch. Murthy K. Vasanthakumar N.S. Karthiselva Srinivasa Rao Bakshi Kinshuk Dasgupta 《Ceramics International》2018,44(17):21132-21137
Simultaneous synthesis and densification of boron carbide and boron carbide- graphene nano platelets (GNP) were carried out by reactive spark plasma sintering of amorphous boron and graphene nano platelets at temperature ranging from 1200 to 1600?°C, pressure of 50?MPa and heating rate of 50?°C/min and 100?°C/min. X-ray diffraction and Raman spectroscopy confirmed the formation of required phases. Electron microscopic images revealed the formation of sub-micron and nano sized grains of plate like morphology. Sintered product with high relative density of 96%TD was achieved at a temperature of 1600?°C and heating rate of 50?°C/min for B4C stoichiometric composition and also exhibited maximum hardness of 21.10?GPa. 相似文献
18.
A high-entropy alloy (HEA), CoCrFeNiMn0.5Ti0.5, is used as a sintering aid for the densification of TiB2 sintered by spark plasma sintering. The HEA content in the starting TiB2-HEA mixture is varied from 0 to 10?wt-%. The microstructure and mechanical properties of the sintered samples are analysed and the optimum HEA content of 10% is found for the preparation of the TiB2-HEA ceramics, allowing combining high mechanical properties (Vickers hardness of 2174.64?HV and flexural strength of 427.69?MPa) and high relative density of 99.1%. 相似文献
19.
20.
《应用陶瓷进展》2013,112(1):55-59
The densification of ZrC ceramics doped with different contents of TiC prepared by spark plasma sintering at the temperatures between 1750 and 1850°C has been investigated. The microstructure and mechanical properties of the ceramics have been characterised. It was shown that TiC additions effectively promoted the densification process by forming (Zr,Ti)C solid solution. The relative densities and mechanical properties of ZrC samples increased with the increasing of TiC content or the sintering temperature. Ceramic with the content of TiC up to 10 vol.-% sintering at 1850°C showed an excellent combination of properties including a relative density of 98.7%, hardness of 20.8?GPa and flexural strength of 605?MPa. 相似文献