首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
通过分级淬火处理得到Al-9.0Zn-2.5Mg-l.5Cu-0.15Zr-0.2Sc铝合金的时间-温度-转变(TTT)曲线和时间-温度-性能(TTP)曲线,采用透射电子显微镜(TEM)、差示扫描量热仪(DSC)和X射线衍射(XRD)对合金进行了相变分析。结果表明:在一定的温度下延长保温时间会导致试样的电导率增加,硬度降低。显微组织观察表明,随着保温时间的增加,许多大型杆状平衡相η(MgZn2)会在基体中析出并快速生长,导致淬火过程中溶质损失,削弱了随后的时效强化效果。η粒子沉淀析出的主要原因是溶质原子的快速扩散和强大的相变驱动力。淬火敏感温度范围为270~390℃。因此,在淬火敏感温度范围内,需适当提高冷却速度以获得较高的力学性能。其他温度范围内应考虑适当降低冷却速度以控制残余应力。  相似文献   

2.
采用CALPHAD技术及热力学计算软件模拟7055合金的凝固路径、TTT曲线,以及η(MgZn_2)相和S(CuMgAl_2)相生成温度和生成数量随Zn、Mg、Cu含量变化的关系曲线,并进行DTA曲线测试,测试结果与热力学结果相一致。热力学计算结果表明,随Zn、Mg、Cu元素含量增加,液相线温度降低,低熔点共晶相析出温度升高;凝固组织中η相(MgZn_2)的生成温度在408~448℃范围内,生成量为5.7%~6.9%;S相(CuMgAl_2)的生成温度在436~469℃之间,生成量为0.5%~1.9%;随着Mg含量增加,合金的淬火敏感性提高,Zn、Cu元素含量的变化对合金的淬火敏感性影响不大。  相似文献   

3.
7050铝合金淬火特性与微观组织   总被引:4,自引:1,他引:3  
采用温度数据采集系统采集得到盐浴炉等温保温过程中试样的温度变化曲线,通过硬度和电导率测试测定7050铝合金的时间-温度-性能(TTP)曲线。采用透射电镜和热分析仪对7050铝合金进行显微组织观察和分析。结果表明:合金TTP曲线鼻温大约在320℃,孕育期约为1.7 s。合金的淬火敏感温度区间为230~410℃,且在此温度区间内,合金硬度随时间的延长而迅速下降。等温保温过程中,合金晶内淬火平衡η相主要依附于晶内Al3Zr等弥散相和细小Al2Cu相形核长大;且随着保温时间延长,淬火析出相的体积分数逐渐增加,晶界析出相趋向于连续分布,无析出带逐渐宽化。等温保温合金经时效后,晶内析出GPⅡ区及η-相数量随着等温保温时间的延长逐渐减少,使得合金性能降低,合金表现出一定淬火敏感性。  相似文献   

4.
采用第一性原理在JMatPro7.0软件的Al基数据库完成4种Al-Zn-Mg-Cu合金时间-温度-转变(TTT)曲线和CCT曲线计算。结果表明:7055合金的主合金元素总量及Cu含量最高,TTT曲线和CCT曲线在左上方;7085合金的Cu含量最低且Zn/Mg比值最高,TTT曲线和CCT曲线在右下方,平衡相析出的孕育期最长,开始析出温度和鼻尖温度最低,合金的淬火敏感性最低;7075合金Zn/Mg比值最小且晶内存在非共格的E(Al_(18)Cr_2Mg_3)相,合金的淬火敏感性最高。实验研究表明与冷却速率960℃/s处相比,冷却速率1.8℃/s处7075、7055、7050和7085 4种合金淬火态的电导率差值和时效态的硬度下降率均减小,硬度下降率分别为35.5%、19%、13.8%和9.5%,此处4个合金固溶体的晶格常数及淬火析出相的尺寸及面积分数依次减小,因此其淬火敏感性依次降低。  相似文献   

5.
采用浸入式末端淬火的方法,结合硬度、电导率测试和相图、连续冷却转变曲线计算,通过电子背散射衍射分析、扫描电子显微镜和透射电子显微镜等微观组织表征方法,研究铜元素含量对超高强AlZn-Mg-Cu合金力学性能淬火敏感性的影响。结果表明:淬火速率从400℃/s降低至70℃/s时,铜含量几乎不影响合金的淬火敏感性;淬火速率从70℃/s降低至4℃/s时,随着铜含量增加,析出驱动力增大,淬火析出相的种类和数量增多、尺寸增大,消耗的相对溶质原子数量增多,合金的淬火敏感性也随之提高;根据晶界及晶内淬火析出相的面积分数差异,发现晶内淬火析出相的数量差异是造成不同合金淬火敏感性差异的主要因素。  相似文献   

6.
1933铝合金锻件的TTP曲线   总被引:1,自引:0,他引:1  
利用分级淬火的方法测定了1933铝合金锻件硬度及电导率的时间—温度—性能(time-temperature-property,TTP)曲线。结果表明,TTP曲线呈"C"形,淬火敏感区间为265~355℃(200 s内硬度值下降10%),TTP曲线的"鼻尖"温度大约在310℃,在此温度下,硬度下降10%的临界时间为100 s。微观组织观察表明,在敏感区间内,平衡相η在晶界及Al3 Zr与基体的界面上优先形核析出,并快速长大,导致合金过饱和度的下降,降低了时效强化的效果。与目前公布的其他Al-Zn-Mg-Cu系合金的TTP曲线对比,1933铝合金的"鼻尖"温度低,临界时间长,淬火敏感区间窄,因此淬火敏感性较低。  相似文献   

7.
采用等温处理的方法,通过电导率测试、力学性能测试、X射线衍射分析(XRD)、透射电镜分析(TEM)研究了7005铝合金的淬火敏感性。结果表明,7005铝合金C曲线的鼻尖温度在290℃左右。等温处理对该合金性能和强化相的形貌、分布有明显影响,随着等温时间的延长,合金基体析出η'相,并逐步粗化为η平衡相,合金导电率上升,硬度明显降低。  相似文献   

8.
通过分级淬火技术得到Al-9.0Zn-2.5Mg-1.5Cu-0.15Zr-0.2Sc铝合金的时间-温度-转变(TTT)曲线和时间-温度-性能(TTP)曲线,采用透射电子显微镜(TEM)、差示扫描量热仪(DSC)和X射线衍射(XRD)进行相变分析。结果表明:在一定的温度下延长保温时间会导致试样的电导率增加,硬度降低。显微组织观察表明,随着保温时间的增加,许多大型杆状平衡相η(MgZn2)会在基体中析出并快速生长,导致淬火过程中溶质损失,削弱了随后的时效强化效果。η粒子沉淀析出的主要原因是溶质原子的快速扩散和强大的相变驱动力。淬火敏感温度范围为270~390℃。因此,在淬火敏感温度范围内,需适当提高冷却速度以获得较高的力学性能。其他温度范围内应考虑适当降低冷却速度以控制残余应力。  相似文献   

9.
7055铝合金的TTP曲线及其应用   总被引:5,自引:2,他引:5  
采用分级淬火的方法测定了7055铝合金的温度—时间—性能(TTP)曲线,并结合合金实际淬火冷却曲线通过淬火因子分析方法预测了合金的硬度。结果表明,合金TTP曲线的“鼻尖”温度大约为355℃,淬火敏感温度区间为210~420℃。淬火因子分析方法预测的合金硬度值和实测值吻合较好,淬火敏感温度区间的冷却速率对合金硬度有决定性影响。根据理论计算认为,要获得最大硬度,淬火敏感温度区间的平均冷却速率需大于500℃/s。  相似文献   

10.
本文研究了7050合金固溶后在180℃~250℃等温淬火过程中,合金的电导率、硬度与微观组织之间的关系。结果表明,7050合金在180℃和200℃等温淬火初期,等温样品的淬火态电导率低于固溶后直接水淬样品;随着等温时间延长,等温样品自然时效态硬度先升后降。7050合金在180℃等温128 min时,基体内形成GPΙ区和η’相;在200℃等温32 min时,基体内形成GPΙ区和部分GPΙΙ区;在250℃等温32 min时,基体内形成η’相和S相。合金基体内形成强化相是造成等温淬火初期合金自然时效态硬度上升的主要原因。7050合金固溶后在200℃等温淬火16 min,此时合金T6状态的硬度较固溶后直接水淬样品仅下降3.4%,而电导率上升达9.2%,性能接近回归制度为180℃-32min的RRA工艺处理后合金的性能,若将该等温淬火制度作为7050合金板材固溶后水淬前的预处理工艺,可使板材获得较好的综合性能。  相似文献   

11.
Single-aging characteristics of 7055 aluminum alloy   总被引:3,自引:0,他引:3  
The microstructures and properties of 7055 aluminum alloy were studied at different single-aging for up to 48 h using hardness test, tensile test, electrical conductivity measurement, XRD and TEM microstructure analysis. The results show that at the early stage of aging, the hardness and strength of the alloy increase rapidly, the peak hardness and strength are approached after 120 ℃ aging for 4 h, then maintained at a high level for a long time. The suitable single-aging treatment of 7055 alloy is 480 ℃, 1 h solution treatment and water quenching, then aging at 120 ℃ for 24 h. Under those condition, the tensile strength, yield strength, elongation and electrical conductivity of the studied alloy are 513 MPa, 462 MPa, 9.5% and 29%(IACS), respectively. During aging, the solid solution decomposes and precipitation occurs. At the early aging stage of 120 ℃, GP zones form and then grow up gradually with increasing ageing time. η′ phase forms after ageing for 4 h and η phase starts to occur after 24 h aging.  相似文献   

12.
The precipitation behavior in an Al-6.8Zn-1.9Mg-1.0Cu-0.12Zr alloy after direct quenching from solution heat treatment temperature of 470 °C to 205–355 °C was investigated by means of hardness tests, electrical conductivity tests, and transmission electron microscopy. At temperatures below 265 °C, the hardness increased gradually to a peak value and then decreased rapidly with time. At 265 °C, the hardness was almost unchanged within the initial 2000 s and then decreased gradually. At higher temperatures, the hardness decreased slowly with time. The electrical conductivity started to increase after a certain period of time and then tended to maintain a constant value at all temperatures. Microstructure examination indicated heterogeneous precipitation of the η phase at grain boundaries and inside grains during holding at 205 °C and 325 °C. Based on the electrical conductivity data, the precipitation kinetics could be described quite well by the Johnson-Mehl-Avrami-Komolgorov relationship with a n value varying between 0.78 and 1.33. The activation energy was estimated to be about 44.9 kJ/mol, which is close to that expected for a dislocation diffusion mechanism. Time-temperature-transformation diagrams were constructed and the nose temperature ranged from 295 °C to 325 °C.  相似文献   

13.
The phase transformation behavior and heat treatment response of Cu-2.8Ni-0.6Si (wt%) alloy subjected to different heat treatments were studied by X-ray diffraction, transmission electron microscopy observation, and measurement of hardness and electrical conductivity. The variation of hardness and electrical conductivity of the alloy was measured as a function of aging time. On aging at the temperature below TR (500-550°C) in Cu-2.8Ni-0.6Si alloy, the transformation undergoes spinodal decomposition, DO22 ordering, and d-Ni2Si phase. On aging at the temperature above TR (500-550 °C), the transformation products were precipitations of d-Ni2Si. The free energy versus composition curves were employed to explain the microstructure observations.  相似文献   

14.
Effect of step-quenching on microstructure of aluminum alloy 7055   总被引:4,自引:0,他引:4  
The effect of step-quenching on the microstructure of aluminum alloy 7055 after artificial aging was studied by hardness testing and transmission electron microscopy (TEM). Step-quenching leads to decomposition of solid solution and heterogeneous precipitation of equilibrium phase mainly on dispersoids and at grain boundaries; thus lower hardness after aging. Prolonging isothermal holding at 415 ℃ results in coarser and more spaced η phase particles at grain boundaries with wider precipitates free zone, and lower density of larger η′ hardening precipitates inside grains after aging. Isothermal holding at 355 ℃ results in heterogeneous precipitation of η phase both on dispersoids and at grain boundaries. Isothermal holding at 235 ℃ results in heterogeneous precipitation of η phase first, and then S phase. Precipitates free zones are created around these coarse η and S phase particles after aging. Prolonging isothermal holding at these two temperatures leads to fewer η′ hardening precipitates inside grains, larger and more spaced η phase particles at grain boundaries and wider grain boundary precipitates free zone after aging.  相似文献   

15.
采用类端淬设备、电导率计、差示热扫描分析仪和透射电镜等并结合数字模拟研究了211Z型铝合金的淬透性能。结果表明:试样在≤40℃水温淬火的过饱和固溶程度、时效后的硬度均高于水温较高(50~60℃)时淬火的相应值,但淬透深度相反;试样时效处理后的硬度值受淬火敏感温度区间(140~380℃)的平均冷却速度影响,超过临界值后,硬度值基本保持不变,小于临界值,则随平均冷却速度的增加而增大。  相似文献   

16.
The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow strain rate tests, electron probe microanalysis, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results revealed that three-step homogenization improved the uniformity of Zr distribution by eliminating segregation of the main alloying elements. During the second homogenization step at 350 °C for 10 h, coarse and strip-like equilibrium η phases formed which assisted the nucleation of Al3Zr dispersoids and reduced the width of the precipitate-free zone of A13Zr dispersoids. As a result, coarse recrystallization was greatly reduced after homogenization at 200 °C, 2 h + 350 °C, 10 h + 470 °C, 12 h, which contributed to improving the overall properties of the 7N01 aluminum alloys.  相似文献   

17.
采用Gleeble-1500D热模拟试验机对7055铝合金进行多道次热压缩试验,并对热压缩试样进行T6热处理。采用TEM、OM观察热压缩试样与热处理试样的组织形貌,并对热处理7055-T6试样进行拉伸试验,研究变形温度对7055铝合金多道次热压缩后组织、热处理后的显微组织与力学性能的影响。结果表明:热变形温度不仅影响多道次热压缩后试样的组织,而且显著影响该合金热处理后的组织和力学性能。在本试验条件范围内,随着温度的升高,经多道次热压缩后试样的晶粒长宽比先减小然后增加,位错密度降低,亚晶尺寸增加,热压缩过程中发生再结晶;热处理后合金中再结晶晶粒体积分数先降低后增加。再结晶体积分数越小,合金的强度越高。当温度为400°C时,再结晶体积分数最小,约为45%,并且合金的抗拉强度和伸长率达到最大值。  相似文献   

18.
The invar alloy N30K10T3 after water quenching from 1150°C (austenite, γ phase) has the temperature of the start of martensitic transformation M s ≈ ?80°C and the Curie temperature T C ≈ 200°C. The effect of aging-induced phase decomposition in a deformed supersaturated solid solution on its hardness HV, electrical conductivity σ, magnetic permeability μ, and linear expansion coefficient β has been studied. It has been shown that cold plastic deformation of the alloy (at 20°C) to 30–50% increases its hardness, virtually does not change the conductivity, and decreases permeability. Aging of the deformed invar results in increasing HV and σ and decreasing μ. At room temperature, the deformed invar has a low linear expansion coefficient; its magnitude grows the faster, the greater the aging temperature T a. Plastic deformation increases the density of dislocations, which form a banded substructure in austenitic grains. Besides, a metastable martensitic phase has been observed, which undergoes a reverse martensitic transformation into austenite upon heating in the temperature range from 550°C to 650°C. This transformation causes a decrease in the linear expansion coefficient β(T) of the deformed material. In samples aged at T a = 700°C (after deformation), an athermal aging-induced martensite (αa phase) appears after cooling them to 20°C. The appearance of the αa phase is due to an increase in the temperature of the start of the martensitic transformation to above the room temperature caused by aging. In the samples containing the αa phase, there is observed a decrease in β in the temperature range from 350 to 670°C, which is due to the reverse transformation of the aging-induced martensite into austenite (αa → γ).  相似文献   

19.
The effect of vanadium (V) addition on the microstructure, the hardness and the electrical conductivity of Cu-2.8Ni-0.7Si alloys was investigated. The V-free, the 0.1 wt% V-added, the 0.2 wt% V-added Cu base alloys were exposed to the same experimental conditions. After the cold rolling of the studied alloys, the matrix was recrystallized during the solution heat treatment at 950 °C for 2 h. However, small amounts of vanadium substantially suppressed the recrystallization and retarded the grain growth of the Cu base alloys. The added vanadium accelerated the precipitation of Ni2Si intermetallic compounds during aging and therefore it contributed positively to the resultant hardness and electrical conductivity. It was found that the hardness and the electrical conductivity increased simultaneously with increasing aging temperature and time with accelerated precipitation kinetics by the addition of vanadium. In the present study, the Cu-2.8Ni-0.7Si alloy with 0.1 wt%V was found to have an excellent combination of the hardness and the electrical conductivity when it was aged at 500 °C.  相似文献   

20.
Abstract

The effects of B on the microstructural and mechanical characteristics of resistance seam welded high strength low alloy linepipe steel were investigated at different regions, such as weld, heat affected zone (HAZ) and base. Because most of the solute B atoms were already precipitated as iron borocarbides and iron borides in as welded steels, the improved hardenability was not observed regardless of the observed regions. The amount of dissolved B precipitates increased with austenitising temperature, and the pre-existing B precipitates were fully dissolved at 950°C for 180 s. The segregation of solute B atoms into austenite grain boundaries was more marked at higher austenitising temperatures, and the segregated solute B atoms greatly increased the hardenability of the austenitised pipes, resulting in hard microstructures like bainite and martensite. The B addition also effectively compensated for the deteriorated hardness at the weld and HAZ of the tempered specimens, although B atoms were precipitated during tempering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号