首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
赵洋  成来飞  徐永东  陈超 《耐火材料》2007,41(3):197-200
以粒度均≤0.044mm的工业Si粉和α-SiC粉为原料,酚醛树脂为结合剂(占总粉末质量的6.5%),配成SiC含量(质量分数)分别为10%、30%、50%和70%的4组试样,经200MPa冷等静压成型后,在N2气氛中(压力为1.25MPa)于1395℃反应烧结制备了SiC-Si3N4复合材料,并采用SEM、XRD和EDS等测试手段对试样进行了观察和测试。结果表明:随着粉料中SiC含量的增加,烧后试样的体积密度下降,显气孔率提高,抗折强度降低,以SiC加入量为10%的试样性能最优;4组试样经800℃~室温空冷热震15次后的抗折强度保持率均在90%以上,表明材料具有良好的抗热震性能。  相似文献   

2.
Additive manufacturing (AM) techniques are promising manufacturing methods for the production of complex parts in small series. In this work, laser sintering (LS) was used to fabricate reaction bonded silicon carbide (RBSC) parts. First, silicon carbide (SiC) and silicon (Si) powders were mixed in order to obtain a homogeneous powder. This powder mixture was subsequently laser sintered, where the Si melts and re-solidifies to bind the primary SiC particles. Afterwards, these SiSiC preforms were impregnated with a phenolic resin. This phenolic resin was pyrolysed yielding porous carbon, which was transformed into secondary reaction formed SiC when the preforms were infiltrated with molten silicon in the final step. This resulted in fully dense RBSC parts with up to 84?vol% SiC. The optimized SiSiC combined a Vickers hardness of 2045?HV, an electrical conductivity of 5.3?×?103?S/m, a Young's modulus of 285?GPa and a 4-point bending strength of 162?MPa.  相似文献   

3.
《Ceramics International》2021,47(22):31277-31285
In this study, a high-strength silicon nitride (Si3N4) antenna window was successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding before final sintering. The effects of CIP after debinding and sintering aids on the bulk density, total porosity, bending strength and microstructure of Si3N4 ceramics were examined. The results show that the bending strength of SLS Si3N4 ceramics can be greatly improved by adding sintering aids between Si3N4 granules and by CIP after debinding. Optimal performance of ceramics is obtained by CIP after debinding and the use of inter-granule sintering aids. The porosity, bulk density, and bending strength are 18.7%, 3.11 g/cm3, and 685 MPa, respectively. Eliminating the pores by the CIP after debinding and by inter-granule sintering aids promotes the growth of rod-like β-Si3N4, which lock with each other contribute to the strengthening of Si3N4 ceramics.  相似文献   

4.
《Ceramics International》2022,48(20):29900-29906
Porous Si3N4 ceramics are widely used in the aerospace field due to its lightweight, high-strength, and high wave transmission. Traditional manufacturing methods are difficult to fabricate complex structural and functional ceramic parts. In this paper, selective laser sintering (SLS) technology was applied to prepare porous Si3N4 ceramics using AlN as an inorganic binder. And the effects of AlN content on the properties of the obtained ceramic samples were explored. As the AlN content increased, nano-Al2O3 and nano-SiO2 formed the eutectic liquid phase, enhancing the sintering densification and phase transformation of Si3N4 poly-hollow microspheres (PHMs). The island-like partial densification structures in Si3N4 green bodies increased. During the high-temperature sintering, the eutectic liquid phase partially transformed into the mullite phase or reacted with AlN and Si3N4 to form the Sialon phase. With the increase of AlN content, the fracture mode of Si3N4 ceramics changed from fracturing along PHMs to fracturing across PHMs. The bonding depth between PHMs increased and the connection between the grains was tighter, so the Si3N4 ceramics became denser. With the increase of AlN addition, the total porosity of the porous Si3N4 ceramics tended to decrease and the flexural strength gradually increased. When AlN content was 20 wt%, the total porosity and the flexural strength were 33.6% and 23.9 MPa, respectively. The addition of AlN inorganic binder was carried out to develop a novel way to prepare high-performance porous Si3N4 ceramics by SLS.  相似文献   

5.
《Ceramics International》2020,46(5):6182-6190
The SiC/Si3N4 composites were fabricated with sintering process. To produce SiC/Si3N4 composite components, slurry mixtures containing Si/SiC powders were used by the slip casting method. In order to investigate the effect of dispersants and additives on the rheological properties and the body casted, slurries with concentration of 70% solid weight were prepared. It included a mixture of silicon and silicon carbide with weight ratios of 30 wt% and 70 wt%, respectively, and various weight percentages of Ball clay as lubricant and Tiron (sodium salt of benzene disulfonic acid) as dispersant at pH value of 7. After preparing the green bodies by slip casting method by using plaster mold, the samples were sintered at 1450 °C inside an atmospheric-controlled furnace under a pressure of 0.12 MPa of nitrogen gas for 2 h. By examining the rheological properties of the slurry and the sintering properties, it was concluded that the best slurry was obtained in terms of viscosity, density, porosity and strength using 5 wt% Ball clay and 0.5 wt% Tiron. Phase transformations, microstructure and morphology of the sintered specimens were accomplished by Field Emission Scanning Electron Microscopy (FESEM) examination and X-ray diffraction experimental analysis. XRD and FESEM results demonstrated that the composite fabricated by slurry containing 5 wt% Ball clay and 0.5 wt% Tiron had the least porosity without SiO2 phase.  相似文献   

6.
Difficulties in sintering refractory ceramics limit their potential high-demanding applications. Selective laser sintering/melting of ceramics is extremely challenging due to poor sinterability of refractories caused by a low thermal shock resistance and an insufficient electron conductivity blocking absorption of laser electron beam energy, etc. Here, we propose a new approach to fabricate Si3N4-based complex geometry parts by selective laser sintering. This is a two-step approach including (i) selective laser sintering of silicon powder providing a needed shape, and (ii) nitridation of the as-shaped silicon parts aimed at fabrication of the Si3N4 component. Parametric study of the process has been performed for optimization of the sintering parameters, such as laser current, point distance and exposure time. The silicon component of full Archimedes density, 12?GPa Vickers hardness and 432?MPa compressive strength has been produced by SLS technique. Effect of different catalysts (Ni-, Cr-, Co-based) on the nitridation of the shaped silicon parts has been thoroughly studied. The conversion degree of nitridation reaches 50% with Ni-based catalyst subjecting growth of Si3N4 nanofibers on the surface of the component.  相似文献   

7.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

8.
Porous silicon nitride ceramics were prepared via sintered reaction bonded silicon nitride at 1680 °C. The grain size of nitrided Si3N4 and diameter of post-sintered β-Si3N4 are controlled by size of raw Si. Porosity of 42.14–46.54% and flexural strength from 141 MPa to 165 MPa were obtained. During post-sintering with nano Y2O3 as sintering additive, nano Y2O3 can promote the formation of small β-Si3N4 nuclei, but the large amount of β-Si3N4 (>20%) after nitridation also works as nuclei site for precipitation, in consequence the growth of fine β-Si3N4 grains is restrained, the length is shortened, and the improvement on flexural strength is minimized. The effect of nano SiC on the refinement of the β-Si3N4 grains is notable because of the pinning effect, while the effect of nano C on the refinement of the β-Si3N4 grains is not remarkable due to the carbothermal reaction and increase in viscosity of the liquid phase.  相似文献   

9.
Silicon nitride ceramics with high thermal conductivity were fabricated by employing the reaction bonding method. It was revealed that the addition of Si3N4 diluents affected both the nitriding reaction and the post-sintering behavior by changing the size of the silicon particle during the milling process. The reduced size of silicon particle led to an increased degree of nitridation. Further, narrower pore channels in the nitrided bodies caused by the reduced size of silicon particle enhanced the final density, by promoting the easier elimination of finer pores during post-sintering. The positive effect of the finer silicon particle was confirmed by a back-up experiment employing a variety of silicon particle sizes, produced by milling the raw silicon powder for different milling times. Thermal conductivity was dominated by material density rather than variation of the microstructure or oxygen content in the current research.  相似文献   

10.
The implementation of additive manufacturing for ceramics is more challenging than for other material classes, since most of the shaping methods require polymer binder. Laser additive manufacturing (LAM) could offer a new binder-free consolidation route, since it is capable of processing ceramics in a direct manner without post-processing. However, laser processing of ceramics, especially high performance oxide ceramics, is limited by low thermal shock resistance, weak densification and low light absorptance at room temperature; particularly in the visible or near-infrared range. An extensive review focusing only on LAM (powder bed fusion – laser beam and directed energy deposition) of high performance oxide ceramics is currently lacking. This state-of-the-art review gives a detailed summary and critical analysis about process technologies, part properties, open challenges and process monitoring in the field of oxide ceramics. Improvements in accuracy and mechanical strength are proposed that could open LAM of oxide ceramics to new fields.  相似文献   

11.
Dense Si3N4 ceramics were prepared by fused deposition molding method accompanied by gas pressure sintering. In this study, the surface steps, inter layer bonding and microstructure evolution were characterized and dense Si3N4 ceramics without obvious defects were obtained. It was verified that layer thickness and nozzle diameter have little impact on the density and flexural strength of both green and sintered parts. As to the filling strategy, contour offset path was more effective to obtain sintered part with higher flexural strength than parallel lines and grid path, which was due to the possible voids appeared at the intersection of print paths with different directions. The highest flexure strength 824.74 ± 85 MPa was obtained with layer thickness 0.15 mm, nozzle size 0.6 mm and contour offset path. The reliability of the obtained Si3N4 ceramics was also investigated and complex shaped Si3N4 ceramic parts with good shape keeping was prepared successfully.  相似文献   

12.
Lattice structures, their shape, orientation, and density make the critical building blocks for macro-scale geometries during the AM process and, therefore, manipulation of the lattice structure extends to the overall quality of the final product. This work reports on manufacturing of MoSi2-Si3N4 ceramic lattices through a selective laser melting (SLM) approach. The strategy first employs the production of core-shell structured MoSi2/(10-13?wt%)Si composite powders of 3–10?μm particle size by combustion synthesis followed by SLM assembly of MoSi2/Si lattices and their further nitridation to generate MoSi2-Si3N4 mesostructures of designed geometry. Experimental results revealed that the volumetric energy density of SLM laser has remarkable influence on the cell parameters, strength, porosity and density of lattices. Under compressive test, samples sintered at a higher laser current demonstrated a higher strength value. Selective laser melting has shown its potential for production of cellular lattice mesostructures of ceramic-based composites with a low content of a binder metal, which can be subsequently converted into a ceramic phase to produce ceramic-ceramic structure.  相似文献   

13.
To improve the density of SiC ceramic components with complicated shape built by laser sintering (LS), cold isostatic pressing (CIP) and reaction sintering (RS) were incorporated into the process. In the process of LS/CIP/RS, Phenol formaldehyde resin (PF)-SiC composite powder was prepared by mechanical mixing and cold coating methods, with an optimized content of PF at 18?wt%. For the purpose of obtaining improved density of the sintered body after final reaction sintering, carbon black was added into the initial mixed powder. The material preparation, LS forming and densification steps were optimized throughout the whole fabrication process. The final sintered SiC bodies with the bending strength of 292 ~ 348?MPa and the density of 2.94–2.98?g?cm? 3 were prepared using the PF coated SiC-C composite powder and the LS / CIP / RS process. The study further showed a positive and practical approach to fabricate SiC ceramic parts with complicated shape using additive manufacturing technology.  相似文献   

14.
逆反应烧结制备铝电解槽用氮化硅-碳化硅复合材料   总被引:3,自引:0,他引:3  
采用常规的反应烧结工艺制作铝电解槽侧壁材料用Si3N4/SiC时存在不足,为此,提出应用逆反应烧结工艺进行生产性试验的设想。在制备Si3N4/SiC复合材料时,常规反应烧结是以Si和SiC为原料经氮化烧结;逆反应烧结是以Si3N4和SiC为原料,首先使Si3N4反向反应生成活性氧化物后进行烧结。结果表明:该工艺特点是新生的Si2N2O或SiO2进行活性烧结;制品具有良好的物理和化学性能。制品结构紧密,新生氧化物或亚氧化物紧密地充填在Si3N4和SiC颗粒间界,新工艺制备的砖的抗冰晶石熔体侵蚀的性能优于常规工艺烧成砖,是铝电解槽侧壁的良好材料。  相似文献   

15.
以氮化硅细粉(粒度<0.088 mm,w(β-Si3N4)>95%)、碳化硅(w(SiC)>98%,粒度分别为2.8~0.9mm、0.9~0.15 mm、<0.115 mm和<0.063 mm四级)、硅粉(粒度<0.045 mm,w(Si)>98%)和硅灰(w(SiO2)=98.3%)为原料,以木质素磺酸钙水溶液作成型结合剂,采用150 MPa的压力成型为65 mm×114 mm×230mm的Si3N4-SiC、Si3N4-SiC-Si和Si3N4-SiC-SiO2三种试样.在空气气氛中,以50℃·h-1的升温速度升至800℃保温4 h,再升至1450℃保温2 h,自然冷却至室温后,测定烧成后试样的常温耐压强度、常温抗折强度、1400℃下的高温抗折强度、显气孔率、体积密度和残氮率,并采用XRD、SEM和EPMA等手段分析烧后试样的相组成和显微结构.结果表明3种试样在空气气氛中烧成后的高温(1400℃)和常温抗折强度都比较高,显气孔率都比较低,而耐压强度则以Si3N4-SiC试样的最高;烧成后试样中心区域的残氮率以Si3N4-SiC-Si试样的最高,Si3N4-SiC-SiO2试样的次之,Si3N4-SiC试样的最小;在空气气氛中烧成后,Si3N4-SiC试样中的Si3N4分解较多,SiC-Si3 N4-Si试样的表面和内部都明显含有单质Si,SiC-Si3N4-SiO2试样表面区域的Si2N2O晶体发育很好,而内部区域的晶体发育较小.  相似文献   

16.
Si3N4/纳米SiC复相陶瓷的研究   总被引:10,自引:0,他引:10  
采用纳米SiC粉体制备了Si3N4/纳米SiCp复相陶瓷。研究了制备工艺、纳米SiC含量对材料性能及显微结构的影响,并对材料显微结构特点与强韧化机制进行了分析 。结果表明:添加20vo%〈100nm的SiC粉体时,复相陶瓷的室温抗弯强度达856MPa,当添加10vo%上述SiC粉体时,复相陶瓷的增韧效果最佳,断裂韧性达8.27MPam^1/2,比基体材料提高了23%。  相似文献   

17.
《Ceramics International》2023,49(2):1624-1635
Selective laser sintering (SLS) combined with reaction melt infiltration was used to fabricate Si–SiC ceramic matrix composites, and the effects of different concentrations of phenolic resin (PF) on the properties of the SLS green body and carbonized and final Si–SiC samples were investigated. The results showed that the impregnation with PF can increase the bulk density, reduce the porosity of the samples at all stages, and improve the mechanical properties of the reactive bonded samples. The degree of densification and mechanical properties of the sample gradually enhanced with an increase in PF concentration. The main phases of the Si–SiC composites were free Si, α-SiC, β-SiC, plus an extremely small amount of Al–Si alloy, and the SiC and the Si phase contents increased and decreased, respectively, as the concentration of PF increased when measured using Rietveld refinement and image analysis software. The macroscopic properties of the samples improved greatly after precursor infiltration pyrolysis (PIP) treatment with 66.7%vol PF-ethanol solution twice. According to the crystal nucleation-growth theory, it was inferred that the infiltrated PF could provide a certain amount of pyrolytic carbon in the carbonized specimen. During the reaction bonded process, the carbon formed by carbonization pyrolysis first dissolves into the molten Si and reaches saturation. With the further dissolution of carbon, [C] and [Si] in the liquid phase contact each other to form β-SiC nuclei, the nuclei that precipitate at the pore wall position and gradually form a continuous interfacial layer of β-SiC. The β-SiC layer prevents the liquid Si from direct contact with C inside the prefabricated body, therefore, further reactants diffuse through the layer. Finally, the fine crystalline β-SiC grains were fabricated inside the specimen.  相似文献   

18.
采用热压法进行氮化硅陶瓷材料的扩散连接.结果表明:在1520℃,15MPa,60min条件下,氮化硅连接体的最高强度为448.6MPa,超过母材强度;平均连接强度为401.5MPa,为母材强度的96%.  相似文献   

19.
TiC/Si3N4导电陶瓷复合材料的制备   总被引:5,自引:0,他引:5  
通过气压烧结工艺制备了含1,5,20,25,35wt%TiC的Si3N4陶瓷复合材料研究了其导电特性,该复合材料由充当绝缘体的Si3N4和作为导电添加剂的TiC组成,其电阻率主要取决于其中的TiC含量。复合材料的渗流阈值VC为16.45-18.50vol%,当TiC含量达到或超过该阈值时复合材料中就形成导电通路,电阻率迅速降低。  相似文献   

20.
Si/SiC composite ceramics was produced by reaction sintering method in process of molten silicon infiltration into porous C/SiC preform fabricated by powder injection molding followed by impregnation with phenolic resin and carbonization. To optimize the ceramics densification process, effect of slurry composition, debinding conditions and the key parameters of all technological stages on the Si/SiC composite characteristics was studied. At the stage of molding the value of solid loading 87.5% was achieved using bimodal SiC powder and paraffin-based binder. It was found that the optimal conditions of fast thermal debinding correspond to the heating rate of 10?°C/min in air. The porous C/SiC ceramic preform carbonized at 1200?°C contained 4% of pyrolytic carbon and ~25% of open pores. The bulk density of Si/SiC ceramics reached 3.04?g/cm3, silicon carbide content was 83–85?wt.% and residual porosity did not exceed 2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号