首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 739 毫秒
1.
2D-C/HfC–SiC composites were prepared by a combination of precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI). Creep tests were performed at 1100°C in air under different stress conditions. Unlike most, C/SiC and SiC/SiC ceramic matrix composites only underwent primary and secondary creep stages, and the C/HfC–SiC composites underwent tertiary creep stage in the creep process. The reason was that the mechanical properties of C/HfC–SiC materials prepared by PIP + CVI methods were different from those prepared by traditional methods. The microscopic morphological analysis of the sample fracture showed that the oxidation products SiO2 and Hf–Si–O glass phases of the HfC–SiC matrix played a crack filling role in the sample during creep. In turn, it provided effective protection to the internal fibers of the sample. The creep failure of C/HfC–SiC composites in a high-temperature oxidizing atmosphere was caused by the oxidation of the fibers. The total creep process was dominated by the oxidation of carbon fibers. It is noteworthy that there was the generation of HfxSiyOz nanowires in the samples after high-temperature creep. The analysis of the experimental data showed that the creep stress had a linear negative correlation with the creep life.  相似文献   

2.
Due to poor mechanical properties and antioxidation properties, etc of single phase ultrahigh‐temperature ceramics (UHTCs), the second phase such as SiC was usually introduced for improving those properties. Herein, a novel stratagem for synthesis of binary HfC–SiC ceramics has been presented. A Hf–O–Hf polymer as a HfO2 precursor has been synthesized for preparing soluble HfC–SiC precursors with high solid content and low viscosity solutions without additional organic solvents. The structure of PHO was characterized by FTIR and 1H‐NMR, the crystalline behavior and morphologies of polymer‐derived ceramics were identified by XRD, SEM‐EDS, and TEM. It was shown that PHO firstly transformed into HfO2, and then reacted with in situ carbon derived from DVB and PCS thus producing cubic HfC through carbothermal reduction. In addition, the obtained HfC–SiC nanopowders exhibited spherical morphology with a diameter less than 100 nm, while the Hf, Si, and C are homogeneously distributed.  相似文献   

3.
《Ceramics International》2020,46(14):22718-22726
We propose a plasma-activated direct bonding process at low temperatures (≤200 °C) to form heterostructures between single-crystalline SiC and conventional Si-based substrates (SiO2, Si, and glass) without any interlayers. Surface activation was performed via an inductively coupled O2 plasma for 60 s with a lower bombardment damage position. The SiC surfaces were much more hydrophilic after activation, and the generation of defect states was suppressed. Consequently, void-free and robust bonding interfaces of SiC/SiO2, SiC/Si and SiC/glass were successfully achieved. There were no carbon-enriched layers across the bonding interfaces, which could improve the electrical properties of SiC-based devices. Additionally, the bonding interface of SiC/glass exhibited excellent optical transparency, and interfacial corrosion resistance was confirmed via immersion tests in biological solutions. This bonding method provides a feasible route towards industry-compatible heterogeneous integration of single-crystalline bulk SiC onto Si-based platforms for electronic, optical, mechanical, and biomedical applications.  相似文献   

4.
《Ceramics International》2021,47(20):28218-28225
Si3N4–SiC/SiO2 composites were prepared by employing three-dimensional (3D) printing using selective laser sintering (SLS) and infiltration processing. The process was based on the infiltration of silica sol into porous SLS parts, and silicon carbide and silicon nitride particles were bonded by melted nano-sized silica particles. To optimize the manufacturing process, the phase compositions, microstructures, porosities, and flexural strengths of the Si3N4–SiC/SiO2 composites prepared at different heat-treatment temperatures and infiltration times were compared. Furthermore, the effects of the SiC mass fraction and the addition of Al2O3 and mullite fibers on the properties of the Si3N4–SiC/SiO2 composites were investigated. After repeated infiltration and heat treatment, the flexural strength of the 3D-printed Si3N4–SiC/SiO2 composite increased significantly to 76.48 MPa. Thus, a Si3N4–SiC/SiO2 composite part with a complex structure was successfully manufactured by SLS and infiltration processes.  相似文献   

5.
《Ceramics International》2016,42(4):4768-4774
In order to improve the ablation properties of carbon/carbon composites, HfC–SiC coating was deposited on the surface of SiC-coated C/C composites by supersonic atmospheric plasma spraying. The morphology and microstructure of HfC–SiC coating were characterized by SEM and XRD. The ablation resistance test was carried out by oxyacetylene torch. The results show that the structure of coating is dense and the as-prepared HfC–SiC coating can protect the C/C composites against ablation. After ablation for 30 s, the linear ablation rate and mass ablation rate of the coating are −0.44 μm/s and 0.18 mg/s, respectively. In the ablation center region, a Hf–Si–O compound oxide layer is generated on the surface of HfC–SiC coating, which is conducive to protecting the C/C composites from ablation. With the ablation time increasing to 60 s, the linear ablation rate and mass ablation rate are changed to −0.38 μm/s and 0.26 mg/s, respectively. Meanwhile, the thickness of the outer Hf–Si–O compound layer also increases.  相似文献   

6.
《Ceramics International》2016,42(13):14518-14525
To improve the oxidation resistance of carbon/carbon (C/C) composites, a dense HfC nanowire-toughened Si-Mo-Cr/SiC multilayer coating was prepared by chemical vapor deposition (CVD) and pack cementation. The microstructure, thermal shock and isothermal oxidation resistance of the coating were investigated. HfC nanowires could improve the toughness of the coating and suppress the coating cracking. After incorporating HfC nanowires in the coating, both of the thermal shock and isothermal oxidation resistance of the coating were obviously improved. The multilayer coating with HfC nanowires could effectively protect C/C composites at 1773 K for 270 h, whose weight loss is only 0.19%. The good oxidation resistance is mainly attributed to the formation of a compound glass layer containing SiO2 and Cr2O3.  相似文献   

7.
《Ceramics International》2020,46(8):12249-12254
The SiC nanowires (NWs) were fabricated by a simple chemical vapour deposition (CVD) method at high temperature using Si, phenolic resin, and ZrB2 powder. The morphologies of the fabricated SiC NWs included SiC/SiO2 chain-beads and straight wires with core-shell structures. The fabricated SiC NWs were micrometre-to-millimetre in length, with chains 100–300 nm in diameter and beads with diameters of less than 1 μm. The core-shell-structured SiC NWs consisted of crystalline SiC cores and thin amorphous SiO2 shells. SiC crystals grew in the [111] direction governed by a vapour-solid (VS) mechanism. The added ZrB2 promotes the generation of gaseous species at higher gas pressures, which contributes to the formation of SiC NWs by CVD. The fabricated SiC NWs exhibited good photoluminescence properties due to many stacking faults and the presence of amorphous SiO2.  相似文献   

8.
《Ceramics International》2021,47(24):34802-34809
Yb2Si2O7 is a popular environmental barrier coating; however, it decomposes into Yb2SiO5 in high-temperature steam environments. The thermal mismatch between Yb2Si2O7 and Yb2SiO5 leads to the cracking and failure of the disilicate coating via oxidation. Dispersing SiC nanofillers into the Yb2Si2O7 matrix is suggested to maintain the Yb2Si2O7 matrix and promote crack self-healing. This study is aimed at clarifying the effect of water vapor on the self-healing ability of such composites. X-ray diffraction analysis and scanning electron microscopy were used to monitor the surface composition and the crack formation, respectively, in 10 vol% SiC-dispersed Yb2Si2O7 composites. Annealing at temperatures higher than 750 °C in air or in a water vapor rich atmosphere led to strength recovery and the self-healing of indentation-induced surface cracks owing to volume expansion during the oxidation of SiC. The self-healing effect was influenced by the oxidation time and temperature. Rapid diffusion of H2O as an oxidizer into the SiO2 layer promoted self-healing in a water vapor rich atmosphere. However, accelerated oxidation at temperatures higher than 1150 °C formed bubbles on the surface. Fabricating composites with a small amount of Yb2SiO5 will be a solution to these problems.  相似文献   

9.
Coatings with composition close to Ti3SiC2 were obtained on SiC substrates from Ti and Si powders with the molten NaCl method. In this work, the growth of coatings by reaction in the salt between monolithic SiC substrates and titanium powder is obtained between 1000 and 1200 °C. At 1000 °C, a coating of 8 µm thickness is formed in 10 h whereas a thin coating of 0.5 µm has been grown in 2 h. A lack in silicon was first found in the coatings prepared at 1100 and 1200 °C. For these temperatures, the addition of silicon powder in the melt had a favorable effect on the final composition, which is found very close to the composition of Ti3SiC2. The reaction mechanism implies the formation of TiCx layers in direct contact with the SiC substrate and the presence of more or less important quantities of Ti3SiC2 and Ti5Si3Cx in the upper layers.  相似文献   

10.
A two‐step processing was developed to prepare Yb2Si2O7‐SiC nanocomposites. Yb2Si2O7‐Yb2SiO5‐SiC composites were first fabricated by a solid‐state reaction/hot‐pressing method. The composites were then annealed at 1250°C in air for 2 hours to activate the oxidation of SiC, which effectively transformed the Yb2SiO5 into Yb2Si2O7. The surface cracks purposely induced can be fully healed during the oxidation treatment. The treated composites have improved flexural strength compared to their pristine composites. The mechanism for crack healing and silicate transformation have been proposed and discussed in detail.  相似文献   

11.
Effects of SiC/HfC ratios on the ablation and mechanical properties of 3D Cf/HfC–SiC composites by precursor impregnation and pyrolysis (PIP) process were investigated systematically. Both strength (flexural and compressive strength) and modulus increase as the SiC/HfC ratio are improved. The compact and stiff HfC-SiC matrix in addition to the carbon fiber and PyC interphase with less reaction damage accounts for the improved mechanical properties of Cf/HfC-SiC with higher SiC/HfC ratios. Meanwhile, both weight loss and erosion depth of Cf/HfC-SiC are improved with the increased SiC/HfC ratios. Therefore, in order to balance the ablation and mechanical properties, an appropriate SiC/HfC ratio should be considered.  相似文献   

12.
《应用陶瓷进展》2013,112(8):473-482
In order to improve the ablation properties of C/C composites, HfC-based coatings with different mass ratios of SiC were deposited on the surface of SiC-coated carbon/carbon composites by supersonic atmospheric plasma spraying. The morphologies and microstructures of the HfC-based coatings were characterised. The ablation resistance test was carried out by oxyacetylene torch. The results show that the as-prepared coatings are multiphase coatings consisting of HfC, HfO2, SiC and SiO2. The structure of different coatings is dense. After ablation for 60?s, the ablation centre region of coating is smooth without obvious microcrack and pinhole, and no interlaminar crack can be observed at the cross-section. An Hf–Si–O compound oxide layer is generated on the surface of coating, which is beneficial for protecting the C/C composites from being ablated. Meanwhile, the further generated HfSiO4 can play a pinning effect, which can prevent crack extension.  相似文献   

13.
C/HfC-ZrC-SiC composites were fabricated via reactive melt infiltration (RMI) of the mixed HfSi2 and ZrSi2 alloys. The microstructure, infiltration behavior of the hybrid silicide alloys infiltrating C/C composites, and flexural strength of C/HfC-ZrC-SiC composites was studied. Inside composites, there were more Hf-rich (Hf, Zr)C phases distributed in the exterior region, while more SiC and Zr-rich (Zr, Hf)Si2 in the interior region. There was compositional segregation in (Hf, Zr)C, with the HfC content decreasing from the exterior region to interior region. The RMI process was performed at different temperatures to investigate the structural evolution, and a model for the reactive melt infiltration of the mixed HfSi2 and ZrSi2 alloys into C/C composites was established. Compared with C/HfC-SiC and C/ZrC-SiC prepared by same process, C/HfC-ZrC-SiC had the highest flexural strength of 247Mpa and 213Mpa after oxidation at 1200 ℃ for 15 min. Both the unoxidized and oxidized samples presented a pseudo-plastic fracture behavior.  相似文献   

14.
Relations between composition and mechanical properties of the Si3N4/SiC micro/nano-composites were studied by combination of nano-indentation and Vickers indentation techniques. The Si3N4/SiC composites were prepared from crystalline Si3N4 powder doped with SiNC amorphous precursor and yttria as the sintering aid. During sintering the SiNC precursor crystallised to yield both SiC and Si3N4. The in situ formed SiC particles were located both inter- and intra-granularly. The presence of SiC nano-particles enhanced the nano- and macro-hardness, and the fracture toughness of the composites. The nano-hardness of Si3N4/SiC composites ranged between 20 and 24 GPa, and depends on the volume fraction of SiC. The nano-hardness of individual Si3N4 grains exhibited large scatter as the consequence of the presence of intra-SiC inclusions, which directly influence the measured values as the harder phase, or by generating large thermal stresses within Si3N4 grains. Consequently the scatter of nano-hardness was much larger than in case of macro-hardness where the measured values are averaged over large area. The nano-indentation of grain boundaries indicates that the boundaries are much softer than the surrounding matrix phase. Apart of indentation size effect (ISE) this is believed to be an additional reason why the measured values of macro-hardness are lower than the nano-hardness. The maximum fracture toughness (5.8 MPa m1/2) was achieved for the composite with the total amount of 8 wt.% SiC, where a percolating network of intergranular SiC particles was formed, as indicated by the measurement of electrical resistivity.  相似文献   

15.
《Ceramics International》2020,46(14):22102-22107
Multiphase ceramics like ZrC/SiC are promising candidates as ultra-high temperature ceramics for applications in extreme environments. In this work, non-oxide precursors for ZrC/SiC and HfC/SiC composite ceramics were synthesized by a one-pot reaction of three components – metal source, silicon source, and activating reagent. Molecular structures of the precursors were identified by 1H NMR and FTIR. Transformation process of the precursors to the ZrC/SiC ceramics was investigated via XRD and SEM. After heat-treatment at 1600 °C under argon, the obtained ZrC/SiC and HfC/SiC ceramics features a particle size of 100–200 nm and high metal content without excess carbon. The elemental composition of pyrolyzed ceramics can be tuned by varying the ratio of the reagents in the synthesis of precursors. This strategy also inspires a facile fabrication of composite ceramics with other elemental compositions.  相似文献   

16.
The mullite and ytterbium disilicate (β-Yb2Si2O7) powders as starting materials for the Yb2Si2O7/mullite/SiC tri-layer coating are synthesized by a sol–gel method. The effect of SiC whiskers on the anti-oxidation properties of Yb2Si2O7/mullite/SiC tri-layer coating for C/SiC composites in the air environment is deeply studied. Results show that the formation temperature and complete transition temperature of mullite were 800–1000 and 1300°C, respectively. Yb2SiO5, α-Yb2Si2O7, and β-Yb2Si2O7 were gradually formed between 800 and 1000°C, and Yb2SiO5 and α-Yb2Si2O7 were completely transformed into β-Yb2Si2O7 at a temperature above 1200°C. The weight loss of Yb2Si2O7/(SiCw–mullite)/SiC tri-layer coating coated specimens was 0.15 × 10−3 g cm−2 after 200 h oxidation at 1400°C, which is lower than that of Yb2Si2O7/mullite/SiC tri-layer coating (2.84 × 10−3 g cm−2). The SiC whiskers in mullite middle coating can not only alleviate the coefficient of thermal expansion difference between mullite middle coating and β-Yb2Si2O7 outer coating, but also improve the self-healing performance of the mullite middle coating owing to the self-healing aluminosilicate glass phase formed by the reaction between SiO2 (oxidation of SiC whiskers) and mullite particles.  相似文献   

17.
《Ceramics International》2020,46(5):6182-6190
The SiC/Si3N4 composites were fabricated with sintering process. To produce SiC/Si3N4 composite components, slurry mixtures containing Si/SiC powders were used by the slip casting method. In order to investigate the effect of dispersants and additives on the rheological properties and the body casted, slurries with concentration of 70% solid weight were prepared. It included a mixture of silicon and silicon carbide with weight ratios of 30 wt% and 70 wt%, respectively, and various weight percentages of Ball clay as lubricant and Tiron (sodium salt of benzene disulfonic acid) as dispersant at pH value of 7. After preparing the green bodies by slip casting method by using plaster mold, the samples were sintered at 1450 °C inside an atmospheric-controlled furnace under a pressure of 0.12 MPa of nitrogen gas for 2 h. By examining the rheological properties of the slurry and the sintering properties, it was concluded that the best slurry was obtained in terms of viscosity, density, porosity and strength using 5 wt% Ball clay and 0.5 wt% Tiron. Phase transformations, microstructure and morphology of the sintered specimens were accomplished by Field Emission Scanning Electron Microscopy (FESEM) examination and X-ray diffraction experimental analysis. XRD and FESEM results demonstrated that the composite fabricated by slurry containing 5 wt% Ball clay and 0.5 wt% Tiron had the least porosity without SiO2 phase.  相似文献   

18.
A two-step process has been developed for silicon carbide (SiC) coated polyurethane mimetic SiC preform containing silicon nitride (Si3N4) whiskers. SiC/Si3N4 preforms were prepared by pyrolysis/siliconization treatment at 1600 °C, of powder compacts containing rigid polyurethane, novolac and Si, forming a porous body with in situ grown Si3N4 whiskers. The properties were controlled by varying Si/C mole ratios such as 1–2.5. After densification using a chemical vapour infiltration, the resulting SiC/Si3N4/SiC composites showed excellent oxidation resistance, thermal conductivity of 4.32–6.62 Wm−1 K−1, ablation rate of 2.38 × 10−3  3.24 × 10−3 g cm−2 s and a flexural strength 43.12–55.33 MPa for a final density of 1.39–1.62 gcm−3. The presence of a Si3N4 phase reduced the thermal expansion mismatch resulting in relatively small cracks and well-bonded layers even after ablation testing. This innovative two-step processing can provide opportunities for expanded design for using SiC/Si3N4/SiC composites being lightweight, inexpensive, homogeneous and isotropic for various high temperature applications.  相似文献   

19.
A single‐source precursor for the preparation of HfC‐SiC ceramics was synthesized via a Grignard reaction using bis(cyclopentadienyl)hafnium(IV) dichloride, trans‐1,4‐dibromo‐2‐butene, and (chloromethyl)trimethylsilane as raw materials. The composition, structure, pyrolysis process and high‐temperature behavior of the precursor were investigated. The results show that the precursor with a backbone comprising Hf–C, Si–C and CH=CH groups exhibits good solubility in common solvents, such as tetrahydrofuran, dimethylbenzene, and chloroform. Pyrolysis of the precursor at 1000°C yielded a microcrystalline HfC phase with a ceramic yield of 63.86 wt%. The pyrolytic products at 1600°C were HfC–SiC nanocomposite ceramics, which exhibited good thermal stability up to 2400°C. The formation of a (Hf,Si)C solid‐solution would be beneficial for densification during the sintering process. The non‐oxygen structure, high ceramic yield, homogeneous composition and excellent high‐temperature behavior of the pyrolytic products make the as‐prepared precursor a promising material for the preparation of high‐performance ultra‐high‐temperature ceramics.  相似文献   

20.
Cylindrical SiC-based composites composed of inner Si/SiC reticulated foam and outer Si-infiltrated SiC fiber-reinforced SiC (SiCf/Si/SiC) skin were fabricated by the electrophoretic deposition of matrix particles into SiC fabrics followed by Si-infiltration for high temperature heat exchanger applications. An electrophoretic deposition combined with ultrasonication was used to fabricate a tubular SiCf/SiC skin layer, which infiltrated SiC and carbon particles effectively into the voids of SiC fabrics by minimizing the surface sealing effect. After liquid silicon infiltration at 1550 °C, the composite revealed a density of 2.75 g/cm3 along with a well-joined interface between the inside Si/SiC foam and outer SiCf/Si/SiC skin layer. The results also showed that the skin layer, which was composed of 81.4 wt% β-SiC, 17.2 wt% Si and 1.4 wt% SiO2, exhibited a gastight dense microstructure and the flexural strength of 192.3 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号