首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我国的铜矿资源丰而不富,铜矿资源仍是国内短缺的矿种。实现低品位铜矿资源的高效开发和利用对我国铜业经济的稳定发展具有重要的意义。某低品位铜金矿石铜品位0.501%,含金0.4 g/t,硫品位3.88%。铜矿物以硫化铜为主,占总铜的96%,铜矿物嵌布粒度较细,且与黄铁矿致密共生。通过详细的浮选条件试验(磨矿细度、捕收剂用量、铜硫分离CaO用量及磨矿细度)和工艺流程试验(扫选次数和精选次数),最终采用了"阶段磨矿-混合浮选-铜硫分离"的浮选工艺,粗选磨矿细度为-0.074 mm 58.13%,矿浆的p H值约为6,添加100 g/t的硫酸铜为活化剂,采用丁基黄药和丁胺黑药为组合捕收剂,用量为300 g/t(丁基黄药:丁胺黑药=2∶1),铜硫分离的磨矿细度为-0.045 mm 82.45%,石灰的添加量为2 kg/t,采用一次粗选、两次扫选和三次精选的工艺流程可实现铜、金和硫的有效回收。闭路试验结果表明:铜精矿品位为19%左右,含金约9.5 g/t;铜和金的选矿回收率分别为Cu 78.16%和Au 50.90%。试验所采用的浮选工艺流程简单,生产成本低。可为下一步铜选厂的建设提供技术参考和决策依据。  相似文献   

2.
青海某铜矿石中黄铜矿与磁黄铁矿、黄铁矿密切共生,铜硫分离困难,为提高铜及伴生金银的综合回收水平,进行了浮选工艺优化试验。结果表明,在磨矿细度-0.074mm含量占70%、矿浆浓度为30%、捕收剂XKP-01用量为150g/t、石灰用量为1500g/t、2#油用量为23g/t的条件下,经1粗3精2扫的闭路浮选流程,可获得铜、金、银品位分别为20.94%、1.35g/t、357.47g/t,回收率分别为93.46%、22.27%、68.67%的铜精矿。相比以D12+A6为捕收剂的现场生产工艺流程,石灰用量减少了1/4,铜、金、银回收率分别提高了6.86,6.47,31.27个百分点,在保证精矿铜品位的前提下强化了伴生金、银的综合回收。  相似文献   

3.
鲍雷  胡崴  孙锐 《现代矿业》2022,(11):158-161+173
为了提高马尾山铜锌铅银硫多金属矿矿石的综合利用率,针对矿石中有用矿物嵌布粒度不均匀、单体解离不一,导致选矿回收不利的问题,进行了铜优先浮选工艺研究。试验结果表明:在磨矿细度-0.074 mm75%,捕收剂LP-01用量35 g/t,组合抑制剂ZnSO4+Na2SO3用量600 g/t,矿浆pH值为8.0时,经3次精选后获得了铜品位14.69%、铜回收率31.83%的铜精矿,全流程闭路试验可获得铜品位8.02%、铜回收率40.86%的铜铅精矿,提高了铜回收率,实现了铜的综合高效回收。  相似文献   

4.
某铜选厂尾矿试样中铋品位为3.94%,铋主要以自然铋的形式存在,其次为黄铜矿、方铅矿中铋。针对试样性质特点,采用浮选工艺流程回收铜尾矿中的铋。为进一步优化浮选指标,首先以乙硫氮和丁基黄药用量为自变量,铋的回收率为因变量建立混料模型,确定组合捕收剂乙硫氮和丁基黄药的最优配比。在此基础上,利用中心复合设计进行响应曲面设计,以磨矿细度、硫化钠用量、碳酸钠用量、组合捕收剂用量为自变量,铋的回收率为因变量,建立4因素5水平数学模型。然后按模型设计试验进行1次粗选浮选试验,对试验结果进行方差分析,验证模型的可靠性。最后依据响应曲面法确定的最佳浮选条件进行“1粗3精2扫”浮选闭路试验。结果表明:①在磨矿细度为-0.074 mm占85%、氧化钙用量为4 kg/t、硫化钠用量为150 g/t、碳酸钠用量为900 g/t、25号黑药用量为100 g/t、组合捕收剂总用量为200 g/t的条件下,组合捕收剂乙硫氮和丁基黄药的最优配比为4∶1。②方差分析模型的P<0.05,磨矿细度和硫化钠用量对铋的回收率影响显著;响应曲面法确定的最佳粗选条件为磨矿细度-0.074 mm占86%、硫化钠用量140 g/t、碳酸钠用量750 g/t、组合捕收剂用量250 g/t,预测铋的最大回收率为83.77%,实际铋的回收率为83.85%。③根据响应曲面法确定的最佳浮选条件,采用“1粗3精2扫”的闭路浮选试验,获得精矿铋品位24.47%、铋回收率79.25%的铋精矿,铋回收率较原浮选闭路流程提高近2个百分点。研究结果表明混料设计和响应曲面法可用于优化铋浮选的工艺参数,具有较高的可信度。  相似文献   

5.
胡俊  姚尧  赖胜  罗波  李建兵 《现代矿业》2019,35(4):100-104
甘洛铜矿石铜品位平均为1.96%,有害元素含量极低。矿石自然类型单一,铜矿物以孔雀石为主。为实现该铜矿石的有效回收利用,采用混合浮选工艺进行选矿试验。结果表明,在磨矿细度-0.074 mm 77%、活化剂硫化钠用量3 000 g/t,组合捕收剂丁基黄药+丁基铵黑药+羟肟酸钠用量120+60+30 g/t条件下,采用2粗2扫4精混合浮选闭路流程处理矿石,可获得铜品位24.07%、回收率77.12%的铜精矿,损失在尾矿中的铜矿物孔雀石主要与铁质混杂、多充填在裂隙或显微裂隙内,粒度微细,单体解离非常困难,因此难以回收。  相似文献   

6.
西藏某矽卡岩型低品位铜钼矿中主要有用矿物为黄铜矿、辉铜矿以及辉钼矿,原生硫化铜和次生硫化铜共占总铜的95.54%,辉钼矿占总钼的88.06%。分别采用铜钼混合浮选、等可浮和快速浮选三种试验流程进行浮选流程对比试验。结果表明,快速浮选流程效果较好。采用快速浮选经两段磨矿(一段磨矿细度-74μm占63%、二段磨矿细度-74μm占70%)、一次粗选、四次精选、三次扫选、中矿顺序返回的闭路流程处理该矿石,所用混浮粗选捕收剂Flomin-C7446+煤油用量为15+20 g/t,矿浆调整剂石灰用量为200 g/t,起泡剂松醇油用量为15 g/t,最终获得铜品位27.73%、钼品位1.47%,铜回收率93.26%、钼回收率84.66%的铜钼混合精矿。  相似文献   

7.
为合理回收含铜为0.33%的云南某低品位铜矿,在矿石性质研究的基础上,进行了选矿工艺试验研究。试验结果表明:在磨矿细度为-0.074 mm 85%、组合捕收剂丁基黄药和Z-200(质量比1∶1)用量为80 g/t、2~#油用量为30 g/t、精选石灰用量为300 g/t的最优条件下,通过铜硫混浮—粗精矿再磨浮选工艺流程,最终获得了精矿铜品位为16.48%,铜回收率为82.42%的较好指标。  相似文献   

8.
高效捕收剂ZA在铜硫分离浮选中的应用   总被引:2,自引:0,他引:2  
西南某多金属硫化矿主要有价元素为铜、锡、硫,铜品位为1.05%、锡品位为0.28%、硫品位为7.19%,伴生银品位为13.20 g/t。铜主要以硫化铜形式存在,占有率为93.60%。现场采用铜硫混合浮选-铜硫分离浮选、浮选尾矿摇床重选选锡的浮重联合流程综合回收矿石中的铜硫银锡(银进入铜精矿),存在石灰用量偏大,碱度高,铜和银回收率偏低的问题。为探索低碱度浮选回收铜银的可能性,以复配药剂ZA为铜矿物捕收剂进行了试验研究。结果表明:将磨矿细度为-0.074 mm占75%条件下以硫酸铜为活化剂、丁基黄药为捕收剂,经1粗2精2扫铜硫混合浮选获得的铜硫混合精矿,以石灰为抑制剂在再磨细度为-0.043 mm占85%、pH=10.5的低碱条件下经1粗3精2扫铜硫分离,最终获得了铜品位为25.16%、银品位为212.2 g/t,铜、银回收率分别为91.75%、61.18%的铜精矿及硫品位35.32%、硫回收率79.08%的硫精矿,有效地实现了矿石中铜银硫的分离富集回收,尤其是强化了游离银的选矿富集。试验结果对伴生贵金属硫化矿中贵金属的综合回收具有借鉴意义。  相似文献   

9.
根据矿石性质,新疆某硫化铜矿含有有价元素铜、硫,可通过浮选进行回收。为此,进行了铜硫混合—分离浮选流程试验,在磨矿细度-0.074 mm占60%,调整剂为水玻璃且用量为350 g/t,捕收剂为Z-200且分段用量为(35+25)g/t,石灰用量为2 000~3 000 g/t的条件下,经1粗2扫2次精选得铜硫精矿,再进行1粗1扫2次精选铜硫分离得到了铜品位为23.55%、回收率为93.76%的铜精矿和硫品位为38.84%、回收率为52.37%的硫精矿,试验技术指标理想。  相似文献   

10.
汪泰  叶小璐 《矿冶工程》2017,37(1):39-41
对国内某艾萨炉铜冶炼渣进行了回收铜和银的浮选试验研究。综合回收该铜渣中铜银的前提是:使铜与铁橄榄石、铅铁玻璃等脉石矿物充分解离; 清洁、活化被脉石矿物污染的铜矿物表面; 选择高效捕收剂回收密度大、粒度粗的金属铜。基于此, 确定磨矿细度-0.074 mm粒级占93%, 在球磨机中添加调整剂碳酸钠, 并以GD-3为捕收剂, 通过一粗三精二扫闭路浮选工艺, 获得了铜精矿铜品位29.55%、银品位146.30 g/t, 铜回收率90.99%、银回收率83.48%的技术指标, 为该铜渣的资源化利用奠定了基础。  相似文献   

11.
韩彬  童雄  谢贤  吕昊子 《矿冶》2015,24(4):79-83
对云南某冶炼厂铜炉渣进行了选矿工艺流程和药剂制度的研究。对比了捕收剂种类、配比及用量的作用效果,最终确定XT-53与丁基铵黑药组合药剂作为捕收剂,配比为1∶3,综合用量为80 g/t。进行了磨矿细度试验,在粗选磨矿细度-74μm 90%、粗精矿再磨细度-45μm 85%、粗选尾矿再磨细度-45μm 80%的磨矿条件下,采用阶段磨矿—阶段选别的工艺流程,可获得铜品位为25.20%,回收率为87.82%,金、银品位为0.80 g/t、136.8 g/t,回收率达到67.12%、67.36%的铜精矿。  相似文献   

12.
以云南某高银高砷铜粗精矿为研究对象,研究了磨矿细度、脱药剂、抑制剂、捕收剂等对铜砷分离的影响。采用有机抑制剂与无机抑制剂组合抑制毒砂,选择性捕收剂强化回收银矿物,进行了提质降杂浮选研究。在给矿铜、砷、银品位分别为1.71%、7.54%和41.46 g/t条件下,可以获得铜精矿中铜品位和回收率分别为19.16%和80.31%、银品位和回收率分别为268.22 g/t和46.37%、砷含量0.81%的指标。  相似文献   

13.
为解决华北某低品位斑岩型铜钼矿石的高效、低成本开发利用问题,在查明了矿石中主要有用矿物为黄铜矿、斑铜矿和辉钼矿,原生硫化铜+次生硫化铜占总铜的97.10%,硫化钼占总钼的96.02%后,以钼矿物浮选新型捕收剂为研究核心,对该矿石进行了铜钼混合浮选试验。结果表明,该矿石适宜的磨矿细度为-0.074 mm占65%,铜钼混浮粗选捕收剂Mo+MC用量为12+3 g/t,矿浆调整剂石灰用量为1 500 g/t,起泡剂2#油用量为25 g/t,采用1粗3精3扫、中矿顺序返回的闭路流程处理该矿石,可获得铜、钼品位分别为23.72%、1.044%,铜、钼回收率分别为87.22%、74.39%的铜钼混合精矿。  相似文献   

14.
某闪速炉缓冷铜渣含铜1.01%,主要有用矿物为斑铜矿、辉铜矿和黄铜矿,主要脉石矿物为辉石、玻璃质和磁铁矿等。为了实现其中铜的高效回收,在工艺矿物学研究的基础上,对其进行了浮选选铜试验。结果表明,在磨矿细度为-0.045 mm占90%的情况下,采用2次粗选(一次粗选直接获得高品位铜精矿)、3次精选、2次扫选流程,其中一段硫化铜粗选的捕收剂BK-908用量为20 g/t、起泡剂2#油用量为20 g/t,二段硫化粗选的捕收剂EP用量为40 g/t、矿浆pH调整剂石灰用量为500 g/t、硫化剂硫化钠用量为250 g/t、起泡剂2#油用量为30 g/t,最终获得了铜品位为17.77%、铜回收率为89.38%的铜精矿。  相似文献   

15.
云南楚雄某铜矿含铜0.46%,氧化率达14.91%,属于低品位混合铜矿。工艺矿物学研究结果表明有价矿物中铜以黄铜矿、斑铜矿、孔雀石和硅孔雀石的形式存在,脉石矿物以石英为主,白云石、方解石次之。矿物结构以中粒浸染为主,粗磨即可实现铜矿物的有效解离。通过对单因素(磨矿细度、丁黄药用量、硫化钠用量、2~#油用量)条件试验的研究,获得粗选较佳条件为磨矿细度-0.074 mm 70%,硫化剂硫化钠用量200 g/t,捕收剂丁黄药用量125 g/t,2~#油用量20 g/t。在增加两次精选一次扫选的基础上进行全流程闭路试验获得铜精矿含铜Cu 22.10%,回收率83.12%的较好指标。  相似文献   

16.
云南楚雄某铜矿含铜0.46%,氧化率达14.91%,属于低品位混合铜矿。工艺矿物学研究结果表明有价矿物中铜以黄铜矿、斑铜矿、孔雀石和硅孔雀石的形式存在,脉石矿物以石英为主,白云石、方解石次之。矿物结构以中粒浸染为主,粗磨即可实现铜矿物的有效解离。通过对单因素(磨矿细度、丁黄药用量、硫化钠用量、二号油用量)条件试验的研究,获得粗选最佳条件为:磨矿细度70%-200目,硫化剂硫化钠用量200g/t,捕收剂丁黄药用量125g/t,二号油用量20g/t。在增加两次精选一次扫选的基础上进行全流程闭路试验获得铜精矿含铜Cu 22.10%,回收率83.12%的较好指标。  相似文献   

17.
云南某铜矿,铜品位仅0.47%,氧化率为23.02%;矿物组成虽简单,但对浮选有害的碱性脉石矿物含量较高;总体来看,该矿属低品位难选硫氧混合型铜矿。针对该矿的性质特点,对其进行了浮选试验研究,结果表明:在丁黄药 丁铵黑药(2:1)组合作为捕收剂、其用量150g/t,磨矿细度85%-200目,活化剂硫化钠用量500 g/t的条件下,采用“一粗-一扫-三精”浮选工艺,可获得较好的技术指标,最终铜精矿品位和回收率高达17.56%和90.80%,为低品位难选硫氧混合型铜矿资源的开发利用提供了有力的参考依据。   相似文献   

18.
为综合回收某极低品位难选氧化锌矿,在探索试验的基础上确定了反浮选工艺。试验分别考查了再磨磨矿细度、抑制剂用量及捕收剂用量等条件对浮选指标的影响。闭路试验结果表明,采用反浮选工艺进行氧化锌选别,在磨矿细度为-0.038 mm占68%,水玻璃用量为50 g/t,硫化钠用量为250 g/t,捕收剂Pr用量为80 g/t的条件下,对含Zn 1.99%的给矿进行闭路试验,可获得锌精矿Zn品位16.22%、Zn回收率76.29%的良好指标。研究结果可为极低品位难选氧化锌的浮选回收提供借鉴。  相似文献   

19.
采用浮选法对尼日利亚某高品位氧化铜矿进行了选矿试验研究。结果表明,试样含铜4.10%,氧化铜含量为84%,在磨矿细度-0.074mm含量占90%,Na_2CO_3用量为500g/t、Na_2SiO_3用量为1 000g/t、Na2S用量为300g/t、捕收剂JP用量为700g/t、2号油用量为13g/t的条件下,经过一粗四精三扫混合浮选流程,可获得品位为20.23%,回收率为74.35%的铜精矿。铜精矿中含Au 4.41g/t、Ag3526g/t,其回收率分别为75.66%、81.81%。该单一浮选工艺不仅实现了氧化铜矿的高效分选,而且综合回收了伴生的金和银。  相似文献   

20.
周芸  丰奇成 《矿冶》2020,29(3):25-30
高钙高硅铜矿中元素铜及伴生金银的回收价值高,但实际生产中这些有价成分的回收指标较低,导致企业经济效益不理想。针对矿石性质,采用石灰和硫化钠为矿浆调整剂,丁基黄药与丁基铵黑药联合使用作为捕收剂,在磨矿细度-74μm粒级含量占70%的基础上,进行了浮选药剂优化和闭路试验。在石灰用量1 000g/t、硫化钠用量400g/t、丁基黄药用量400g/t、丁基铵黑药用量50g/t、松醇油用量84g/t的药剂制度下,采用两次粗选、两次精选、一次扫选、中矿顺序返回的浮选闭路流程,最终获得Cu品位21.45%、回收率90.46%,Au品位7.92g/t、回收率79.39%,Ag品位453.50g/t、回收率81.82%的铜精矿。与生产现场指标相比,不仅提高了矿石中铜的浮选回收率,而且极大地提高了矿石中伴生金银的回收效果,浮选指标较为理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号