首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High performance ultra-low temperature co-fired ceramic (ULTCC) materials were prepared from CuO- MgO- ZnO- Al2O3- B2O3- Li2O glass-ceramics. The sintering behaviors, crystalline phase evolution, microstructure and dielectric properties, as well as their compatibility with Ag and Al electrodes, were investigated. With the suitable substitution of MgO for ZnO, the dielectric properties of glass-ceramics were improved. It is mainly associated with the fine microstructure, highly crystallinity, and decrease in tetrahedral distortion in the crystal lattice. All the glasses completed the densification at 575–600 °C, and ZnB4O7 is the only crystalline phase precipitated from the glasses. Moreover, the glass-ceramic with 1 wt% MgO sintered at 575 °C for 5 h, exhibited low relative permittivity ~ 7.1 and low dielectric loss ~ 6.40 × 10?4. And the glass-ceramic with 4 wt% MgO sintered at 600 °C for 5 h, also displayed low relative permittivity ~ 7.1 and low dielectric loss ~ 5.77 × 10?4. Both two glasses have good sintering compatibility with silver and aluminum electrodes, which provided high potential for ULTCC application.  相似文献   

2.
ZnO-deficient Zn2-xGeO4-x ceramics with 0.05?≤?x?≤?0.15 were synthesized because a ZnO secondary phase is formed in the stoichiometric Zn2GeO4 ceramics synthesized using micrometer-sized ZnO and GeO2 powders. The Zn1.9GeO3.9 ceramic sintered at 1000?°C showed a homogeneous Zn2GeO4 phase with good microwave dielectric properties: εr of 6.8, Q?×?f of 49,000?GHz, and τf of ?16.7?ppm/°C. However, its sintering temperature was still too high for it to be used as an advanced substrate for low-temperature co-fired ceramic devices. Therefore, various amounts of B2O3 were added to the Zn1.9GeO3.9 ceramics to reduce their sintering temperature. Owing to the formation of a B2O3-GeO2 liquid phase, these ceramics were well sintered at low temperatures between 925?°C and 950?°C. In particular, 15?mol% B2O3-added Zn1.9GeO3.9 ceramic sintered at 950?°C showed promising microwave dielectric properties for advanced substrates without the reaction with an Ag electrode: εr?=?6.9, Q?×?f?=?79,000?GHz, and τf?=??15?ppm/°C.  相似文献   

3.
Herein, the improvement of the microwave dielectric properties and sintering characteristics of Zn1?xBixVxW1?xO4(x = 0–0.15)-based ceramics is reported. The results showed that an appropriate amount of doping could not only reduce the optimum sintering temperature from 1100° to 900°C, but also enhance the densification of the microstructures and increase the Q×f value from 5351 to 42525 GHz. Additionally, various structural parameters including the phase composition, crystal structure, vibrational and chemical bond characteristics that are correlated with the dielectric properties were systematically investigated. By considering the chemical bond characteristics, the first-principles calculations and the acquired Raman spectra, the interaction between W-O is stronger than Zn-O in the ZnWO4 structure, while the interaction between V-O is stronger than Bi-O in BiVO4. Interestingly, when the Zn0.97Bi0.03V0.03W0.97O4-based ceramics were sintered at 900 °C, improved microwave dielectric properties were acquired (εr =18.32, Q×f=42525 GHz, τf=?67.51 ppm/°C), which provides a promising candidate in low-temperature co-fired ceramics technology.  相似文献   

4.
The sintering and microwave dielectric properties of a ceramic material based on the mixing of Mg3B2O6 and Zn3B2O6 have been widely studied using first-principles calculations and experimental solid-state reactions. Characterization methods include the Network Analyzer, X-ray, Raman diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and differential-thermal and thermo-mechanical analyzer. The increasing amount of Mg2+ results in the appearance of Mg2B2O5 and ZnO, and the mutual substitution (Mg2+ and Zn2+) phenomenon has emerged in Zn3B2O6 and Mg2B2O5. The mechanisms have been explained with the help of DFT calculations. The bond parameters and electron distributions of the ZnO4 tetrahedron and MgO6 octahedron have been modified due to substitution. The sintering, substitution, and phase formation properties have been analyzed quantitatively through the energy parameters. The best dielectric properties were obtained for x = 0.20 sintered at 950°C, εr = 6.47, Q × f = 89 600 GHz (15.2 GHz), τf = −48.6 ppm/°C, relative density = 96.7%. The mixing of Zn3B2O6 and Mg3B2O6 ceramics is a feasible method to obtain a ceramic with low sintering temperature and excellent dielectric properties.  相似文献   

5.
The effects of Ni substitution for Zn on microwave dielectric properties of (Zn1−xNix)3Nb2O8 (x = 0.02–0.08) ceramics were investigated in this study. The XRD patterns of the sintered samples reveal single-phase formation with a monoclinic structure. The tremendous improvement of Q × f value can be achieved by a small level of Ni substitution (x = 0.05). The τf value was found to decrease with a decreasing A-site bond valence. In addition, B2O3 and CuO were used as a sintering aid to lower the sintering temperature from 1180 to 900 °C. Excellent microwave dielectric properties (ɛr  20.7, Q × f  98,000 GHz and τf  −85.2 ppm/°C) and a chemical compatibility with Ag electrodes can be obtained for 4 wt% B2O3–CuO doped (Zn0.95Ni0.05)3Nb2O8 ceramics sintered at 930 °C for 2 h. This constitutes a very promising material for LTCC applications.  相似文献   

6.
Ultra-low-firing-temperature ceramics (Mn1−xMgx)V2O6 (x = 0–1) were prepared using the conventional solid-state reaction method. The effects of the Mn:Mg ratio on the crystal structure and microwave dielectric properties of the prepared ceramics were systematically investigated. The results indicated that an appropriate Mn:Mg ratio effectively improves the dielectric properties of the compounds. Specimens with x = 0.01 and x = 0.93 sintered at 630 °C exhibited the following microwave dielectric properties: εr = 12.4 and 9.8, high Q×f = 57,000 and 21,000 GHz, and τf = –15 and −24 ppm/°C, respectively. This suggests that the (Mn0.99Mg0.01)V2O6 ceramic is a potential material for ULTCC applications.  相似文献   

7.
The effects of ZnO and B2O3 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O‐1Nb2O5‐5TiO2 (LNT) ceramics have been investigated. With addition of low‐level doping of ZnO and B2O3, the sintering temperature of the LNT ceramics can be lowered down to near 920°C due to the liquid phase effect. The Li2TiO3ss and the “M‐phase” are the two main phases, whereas other phase could be observed when co‐doping with ZnO and B2O3 in the ceramics. And the amount of the other phase increases with the ZnO content increasing. The addition of ZnO does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the good microwave dielectric properties of εr = 36.4, Q × = 8835 GHz, τf = 4.4 ppm/°C could be obtained for the 1 wt% B2O3 and 4 wt% ZnO co‐doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as internal electrode.  相似文献   

8.
《Ceramics International》2020,46(8):12088-12095
BaAl2Si2O8–Li2O–MgO–ZnO–B2O3–SiO2 (BAS-LMZBS) glass ceramics were prepared through the solid-state route. The phase transformation, microstructure, bulk density and microwave dielectric properties of (1-x)BaAl2Si2O8-xLMZBS(x = 0.1–0.4) the glass ceramics were examined. The effects of the LMZBS additive as a mineralizer on the hexagonal-to-monoclinic transformation were investigated by X-ray diffraction and scanning electron microscope. All of the hexagonal phases were converted into monoclinic phases when x = 0.1, and it was found that LMZBS glass affected the densification of the ceramic samples. Monocelsian was successfully prepared, and its sintering temperature was reduced from above 1400 °C–870 °C by adding LMZBS glass. Excellent microwave dielectric properties (εr = 7.31, Q × f = 48,926 GHz and τƒ = −48 ppm/°C) were obtained at 870 °C. This sample shows great chemical compatibility with Ag electrodes and can be a promising candidate for practical applications of low-temperature, co-fired ceramics.  相似文献   

9.
《Ceramics International》2022,48(16):23044-23050
Nd[(Mg1-xZnx)1/2Ti1/2]O3 perovskite ceramics (x = 0, 0.2, 0.4, 0.6, 0.8) are prepared by the solid-state reaction method. The effects of Zn2+ substitution on the structure, microstructure, especially the B-site 1:1 cation ordering and microwave dielectric properties have been investigated. Sintered Nd[(Mg1-xZnx)1/2Ti1/2]O3 ceramics all adopt dense microstructure, along with increased dimensional uniformity as Zn2+ substitution. All the ceramics are confirmed to have B-site 1:1 ordered monoclinic perovskite structure with P21/n space group. Atomic mass difference of B-site elements might be an important factor affecting the B-site 1:1 cation ordering. HRSTEM observation suggest that the doped Zn2+ cations have roughly entered the Mg2+ sites to promote 1:1 cation ordering. The degree of the 1:1 cation ordering can be negatively reflected by the full width at half maximum (FWHM) of F2g(B) mode at 372 cm?1 in Raman spectra. With Zn2+ doping, the degree of the 1:1 cation ordering first increases then decreases, and reaches its maximum at x = 0.6. Meanwhile the best combination of microwave dielectric properties is obtained, as εr = 31.4, Q × f = 74,000 GHz, τf = ?44 ppm/°C. It is found that the long-range ordering not only decreases the dielectric loss but also affects the dielectric constant, providing a theoretical foundation to understand further the correlation between ionic configuration and microwave dielectric properties.  相似文献   

10.
《Ceramics International》2022,48(24):36186-36192
In this paper, a series of BaMg2-xZnxV2O8 (0.02 ≤ x ≤ 0.08) ceramic has been obtained by ionic substitution at the Mg-site of BaMg2V2O8 ceramics through the conventional solid-state reaction method. The relationship between the surface morphology and the microwave properties of ceramic samples was analyzed intensively. The results showed that the substitution of Mg2+ by an appropriate amount of Zn2+ can promote their densification, lower their sintering temperature, and reduce the dielectric loss of BaMg2V2O8 ceramics significantly. The BaMg1.98Zn0.02V2O8 ceramic exhibits microwave dielectric properties as εr ~13.4, Q × f ~ 178,760 GHz, τf ~ -14.9 ppm/°C at the optimum sintering temperature (940 °C). This indicates that the ceramic prepared in this work, which combines low dielectric loss, good temperature stability, and low-temperature sintering ability, can be an ideal microwave dielectric material for low-temperature co-firing technology.  相似文献   

11.
The crystal structure and microwave dielectric properties of Zn0.9Ti0.8?xSnxNb2.2O8 (x = 0.00, 0.05, 0.10, 0.15) ceramics sintered at temperatures ranging from 1100 °C to 1140 °C for 6 h were investigated. A single phase with ixiolite structure was obtained. With the increase of Sn content, the dielectric constant decreased attributed to the decrease of dielectric polarizability. The Qf value decreased with the decrease of packing fraction and grain size. The temperature coefficient of resonant frequency (τf) increased due to the increase of the bond valence of Zn0.9Ti0.8?xSnxNb2.2O8 ceramics. The excellent microwave dielectric properties of ? = 35.05, Qf = 49,100 GHz, τf = ?27.6 × 10?6/°C were obtained for Zn0.9Ti0.8?xSnxNb2.2O8 (x = 0.05) specimens sintered at 1120 °C for 6 h.  相似文献   

12.
A novel Li2Mg2-xNa2xMo3O12 (x = 0.09) ceramic with ultra-low sintering temperature is prepared by the solid-state reaction method. This ceramic (625 °C) exhibits excellent microwave dielectric properties (εr = 7.9, Q×f = 43844 GHz, τf = ?48.3 ppm/°C), terahertz transmission properties (εr1 = 7.4, tan σ1 = 0.0158, Tcoefficient = 0.598), and chemical compatibility with Ag. For the first time, two polarization selective devices are designed in the microwave and terahertz regions by using this ceramic substrate, respectively. The transmission amplitudes of the right- and left-handed circularly polarized waves of the microwave device at 9.7 GHz are 0.895 and 0.019, respectively. The transmission coefficients of the y- and x-polarized waves of the terahertz device at 0.45 THz are 0.598 and 0.075, respectively. Both functions are verified by the overall far-field radiation pattern. This work promotes the application of dielectric ceramics and ULTCC technology in the microwave and terahertz regions.  相似文献   

13.
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

14.
《Ceramics International》2020,46(11):18667-18674
Low temperature co-fired ceramics (LTCCs) technology plays an important role in modern wireless communication. Zn3-xCoxB2O6 (x = 0–0.25) low temperature fired ceramics were synthesized via traditional solid-state reaction method. Influences of Co2+ substitution on crystal phase composition, grain size, grain morphology, microwave dielectric properties, bond energy, and bond valence were investigated in detail. X-ray diffraction analysis indicated that the major phase of the ceramics was monoclinic Zn3(BO3)2. Solid solution was formed with Co2+ substituted for Zn2+ because no individual phase that contained Co was observed. An increase in the amount of Co2+ substitution changed average grain sizes, and regrowth of grains were observed with Co2+ substitution. Appropriate amount of Co2+ substitution improved densification. With changes in Co2+ substitution, bond energy of major phase and average bond valence of B–O were positively correlated to temperature coefficient of resonant frequency. The Zn2.927Co0.075B2O6 ceramic sintered at 875 °C for 4 h exhibited excellent microwave properties with εr = 6.79, Q × f = 140,402 GHz, and τf = −87.42 ppm/°C. This ceramic is regarded as candidate for LTCC applications.  相似文献   

15.
This study focused on the glass forming, crystallization, and physical properties of ZnO doped MgO-Al2O3-SiO2-B2O3 glass-ceramics. The results show that the glass forming ability enhances first with ZnO increasing from 0 to 0.5 mol%, and then weakens with further addition of ZnO which acted as network modifier. No nucleating agent was used and the crystallization of studied glasses is controlled by a surface crystallization mechanism. The predominant phase in glass-ceramics changed from α-cordierite to spinel/gahnite as ZnO gradually replaced MgO. The phase type did not change; however, the crystallinity and grain size in glass-ceramics increased when the glasses were treated from 1030 °C to 1100 °C. The introduction of ZnO can improve the thermal, mechanical, and dielectric properties of the glass-ceramics. The results reveal a rational mechanism of glass formation, crystal precipitation, and evolution between structure and performance in the xZnO-(20-x)MgO-20Al2O3-57SiO2-3B2O3 (0 ≤ x ≤ 20 mol%) system.  相似文献   

16.
In this study, MgAl2O4-based ceramics with high quality factor (Qf) and low dielectric constant (εr ≤ 10) were obtained by fabricating MgAl2-x(Zn0.5Ti0.5)xO4 (x = 0–0.5) ceramics via conventional solid-state reaction method. Excellent microwave dielectric properties were achieved for samples at x = 0.5 and sintered at 1550 °C, i.e., εr = 9.86, Qf = 263 900 GHz (five times better than that for x = 0 sample) and τf = ?92 ppm/°C. The X-ray diffraction (XRD) patterns displayed characteristic peaks of MgAl2O4 with spinel structure. MgTi2O5 and MgTiO3 were considered as secondary phases. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and relative density analysis indicated that ultra-high Qf values were dominated by dense microstructure, secondary phase and cation vacancies; whereas εr values were mainly affected by secondary phase and ionic polarizability. MgAl2-x(Zn0.5Ti0.5)xO4 ceramics with excellent microwave dielectric properties have potential application in millimeter-wave communication, dielectric filters, dielectric antennas and resonators.  相似文献   

17.
B2O3 (25.0 mol%) was added to Zn2?xSiO4?x ceramics (0.0  x  0.5) to decrease the sintering temperature. Specimens with 0.0  x  0.3 sintered at 900 °C were well sintered with a high density due to the formation of a B2O3 or B2O3–SiO2 liquid phase. The Q × f value of the Zn2SiO4 ceramic was relatively low, 32,000 GHz, most likely due to the presence of a ZnO second phase. A maximum Q × f value of 70,000 GHz was obtained for the specimens with x = 0.2–0.3, and their ?r and τf values were approximately 6.0 and ?21.9 ppm/°C, respectively. Ag metal did not interact with the 25.0 mol% B2O3-added Zn1.8SiO3.8 ceramic, indicating that Zn2?xSiO4?x ceramics containing B2O3 are a good candidate materials for low temperature co-fired ceramic devices.  相似文献   

18.
《Ceramics International》2020,46(9):13095-13101
In this work, Li2Mg0.6−xCoxZn0.4SiO4 ceramics (x = 0–0.4) added with 3 wt% Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass were synthesised using the solid-state reaction method. The effects of substituting Co2+ for Mg2+in Li2Mg0.6−xCoxZn0.4SiO4 ceramics on crystal structure, microstructure, densification, crystallisation and microwave dielectric properties were investigated. X-ray diffraction patterns showed that monoclinic Li2MgSiO4, monoclinic Li2ZnSiO4 and orthorhombic Li2CoSiO4 formed finite solid solution in Li2Mg0.6−xCoxZn0.4SiO4 ceramics. Clear grain boundaries were observed via scanning electron microscopy. The substitution of Co2+ for Mg2+ increased grain size, densification, crystallinity degree and dielectric constant; it also reduced the dielectric loss of the ceramics to a certain extent. The absolute values of τf were positively related to the crystallinity degree. Li2Mg0.55Co0.05Zn0.4SiO4 ceramic added with 3 wt% LBBS and sintered at 900 °C exhibited considerable microwave dielectric properties of εr = 5.8, Q × f = 47,518 GHz and τf = −74.8 ppm/°C. Therefore, the ceramic is considered a candidate low-temperature co-fired ceramic material for substrate and filter applications.  相似文献   

19.
Sr1+xSm2Al2O7+x (0 ≤ x ≤ 0.05) ceramics were prepared by a conventional solid-state reaction method. Slight Sr2+ nonstoichiometry dramatically enhanced the microwave dielectric performance of the ceramics. Compared with the stoichiometric material, Sr-deficient ceramics show greatly enhanced microwave dielectric properties. For x = 0.03, the ceramics exhibited good microwave dielectric properties of εr = 18.31, Q × f = 78,000 GHz and τf = 2.28 ppm/°C. ZnO and LiF sintering aids were added to the ceramic to reduce the presintering temperature and enhance the microwave dielectric properties of the ceramics. After 0.25 wt% ZnO and 0.25 wt% LiF were added, the ceramics exhibited microwave dielectric properties of εr = 19.40, Q × f = 81,400 GHz and τf = 3.27 ppm/°C.  相似文献   

20.
A novel Zn1-xCoxMoO4 (ZCMO) (x = 0.03) ceramic with low-dielectric constant, low-loss, and low-sintering temperature for 5G electromagnetic beam splitting is developed by solid-state reaction method. This ceramic exhibits excellent microwave dielectric properties with εr = 8.0, Q × f = 57682 GHz, τf = ? 54.9 ppm/°C at a sintering temperature of 825 °C. An array antenna for electromagnetic beam splitting at 5.4 GHz is designed by using this ceramic for the first time. The highest efficiency and the best electromagnetic beam splitting effect can be jointly controlled by the dielectric constant and dielectric loss of the ceramic. The normalized reflection amplitude of each array unit cell is above 98 %, and the reflection phase covers 360°. The function of electromagnetic beam splitting is verified by the far-field pattern of the electric field. This work helps to promote the development of LTCC and broaden the application scope of microwave dielectric ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号