首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

We assessed the use of high-resolution ultra-high-field diffusion magnetic resonance imaging (dMRI) to determine neuronal fiber orientation density functions (fODFs) throughout the human brain, including gray matter (GM), white matter (WM), and small intertwined structures in the cerebellopontine region.

Materials and methods

We acquired 7-T whole-brain dMRI data of 23 volunteers with 1.4-mm isotropic resolution; fODFs were estimated using constrained spherical deconvolution.

Results

High-resolution fODFs enabled a detailed view of the intravoxel distributions of fiber populations in the whole brain. In the brainstem region, the fODF of the extra- and intrapontine parts of the trigeminus could be resolved. Intrapontine trigeminal fiber populations were crossed in a network-like fashion by fiber populations of the surrounding cerebellopontine tracts. In cortical GM, additional evidence was found that in parts of primary somatosensory cortex, fODFs seem to be oriented less perpendicular to the cortical surface than in GM of motor, premotor, and secondary somatosensory cortices.

Conclusion

With 7-T MRI being introduced into clinical routine, high-resolution dMRI and derived measures such as fODFs can serve to characterize fine-scale anatomic structures as a prerequisite to detecting pathologies in GM and small or intertwined WM tracts.
  相似文献   

2.

Objective

Here we develop a three-dimensional analytic model for MR image contrast of collagen lamellae in the annulus fibrosus of the intervertebral disc of the spine, based on the dependence of the MRI signal on collagen fiber orientation.

Materials and methods

High-resolution MRI scans were performed at 1.5 and 7 T on intact whole disc specimens from ovine, bovine, and human spines. An analytic model that approximates the three-dimensional curvature of the disc lamellae was developed to explain inter-lamellar contrast and intensity variations in the annulus. The model is based on the known anisotropic dipolar relaxation of water in tissues with ordered collagen.

Results

Simulated MRI data were generated that reproduced many features of the actual MRI data. The calculated inter-lamellar image contrast demonstrated a strong dependence on the collagen fiber angle and on the circumferential location within the annulus.

Conclusion

This analytic model may be useful for interpreting MR images of the disc and for predicting experimental conditions that will optimize MR image contrast in the annulus fibrosus.
  相似文献   

3.

Objectives

Spin dephasing of the local magnetization in blood vessel networks can be described in the static dephasing regime (where diffusion effects may be ignored) by the established model of Yablonskiy and Haacke. However, for small capillary radii, diffusion phenomena for spin-bearing particles are not negligible.

Material and methods

In this work, we include diffusion effects for a set of randomly distributed capillaries and provide analytical expressions for the transverse relaxation times T2* and T2 in the strong collision approximation and the Gaussian approximation that relate MR signal properties with microstructural parameters such as the mean local capillary radius.

Results

Theoretical results are numerically validated with random walk simulations and are used to calculate capillary radius distribution maps for glioblastoma mouse brains at 9.4 T. For representative tumor regions, the capillary maps reveal a relative increase of mean radius for tumor tissue towards healthy brain tissue of \(128 \pm 23 \%\) (p < 0.001).

Conclusion

The presented method may be used to quantify angiogenesis or the effects of antiangiogenic therapy in tumors whose growth is associated with significant microvascular changes.
  相似文献   

4.

Objective

Simultaneous modeling of true 2-D spectroscopy data, or more generally, interrelated spectral datasets has been described previously and is useful for quantitative magnetic resonance spectroscopy applications. In this study, a combined method of reference-lineshape enhanced model fitting and two-dimensional prior-knowledge fitting for the case of diffusion weighted MR spectroscopy is presented.

Materials and methods

Time-dependent field distortions determined from a water reference are applied to the spectral bases used in linear-combination modeling of interrelated spectra. This was implemented together with a simultaneous spectral and diffusion model fitting in the previously described Fitting Tool for Arrays of Interrelated Datasets (FiTAID), where prior knowledge conditions and restraints can be enforced in two dimensions.

Results

The benefit in terms of increased accuracy and precision of parameters is illustrated with examples from Monte Carlo simulations, in vitro and in vivo human brain scans for one- and two-dimensional datasets from 2-D separation, inversion recovery and diffusion-weighted spectroscopy (DWS). For DWS, it was found that acquisitions could be substantially shortened.

Conclusion

It is shown that inclusion of a measured lineshape into modeling of interrelated MR spectra is beneficial and can be combined also with simultaneous spectral and diffusion modeling.
  相似文献   

5.

Objectives

The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup.

Materials and methods

A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared.

Results

Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m3 while through-plane velocities were similar between all valves.

Conclusion

Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.
  相似文献   

6.

Objective

We demonstrate the potential clinical utility of a 4D non-gadolinium dynamic angiography technique based on arterial spin-labeling called contrast inherent inflow enhanced multi-phase angiography (CINEMA) in pediatric patients.

Materials and Methods

CINEMA was qualitatively compared to conventional time-of-flight (TOF) angiography in a cohort of 31 pediatric patients at 3 Tesla.

Results

CINEMA data were successfully acquired and reconstructed in all patients with no image artifacts. There were no cases where CINEMA was rated inferior to TOF in depicting intracranial vessel conspicuity. In 19 cases, CINEMA was rated equivalent to TOF and in the 12 remaining cases CINEMA was rated superior to TOF.

Conclusion

There is a steadily rising concern in adults and children over the potential effects of intracranial deposition of gadolinium. CINEMA is therefore a viable alternative in dynamic neurovascular imaging.
  相似文献   

7.

Purpose

Real-time monitoring is important for the safety and effectiveness of high-intensity focused ultrasound (HIFU) therapy. Magnetic resonance imaging is the preferred imaging modality for HIFU monitoring, with its unique capability of temperature imaging. For real-time temperature imaging, higher temporal resolution and larger spatial coverage are needed. In this study, a sequence based on the echo-shifted RF-spoiled gradient echo (GRE) with simultaneous multi-slice (SMS) imaging was designed for fast temperature imaging.

Methods

A phantom experiment was conducted to evaluate the accuracy of the echo-shifted sequence using a fluorescent fiber thermometer as reference. The temperature uncertainty of the echo-shifted sequence was compared with the traditional GRE sequence at room temperature through the ex vivo porcine muscle. Finally, the ex vivo porcine liver tissue experiment using HIFU heating was performed to demonstrate that the spatial coverage was increased without decreasing temporal resolution.

Results

The echo-shifted sequence had a better temperature uncertainty performance compared with the traditional GRE sequence with the same temporal resolution. The ex vivo heating experiment confirmed that by combining the SMS technique and echo-shifted sequence, the spatial coverage was increased without decreasing the temporal resolution while maintaining high temperature measurement precision.

Conclusion

The proposed technique was validated as an effective real-time method for monitoring HIFU therapy.
  相似文献   

8.

Object

Recent advances have allowed oscillating gradient (OG) diffusion MRI to infer the sizes of micron-scale axon diameters. Here the effects on the precision of the inferred diameters are studied when reducing the number of images collected to reduce imaging time for clinical feasibility.

Materials and methods

Monte Carlo simulations of cosine OG sequences (50–1000 Hz) using a two-compartment model on a parallel cylinder (diameters 1–5 μm) geometry were conducted. Temporal diffusion spectroscopy was used to infer axon diameters. Three different gradient sets were simulated with different combinations of gradient strengths.

Results

Five frequencies were adequate for d = 3–5 μm with single-sized cylinders and for effective mean axon diameters greater than 2 μm for cylinders with a distributions of diameters. There was some improvement in precision for d = 1–2 μm with 10 frequencies. It is better to repeat measurements at higher gradient strengths than to use a range of gradient strengths. The improvement tended to be greatest when using fewer frequencies and was especially noticeable at very high gradient strengths.

Conclusion

Images can be collected with fewer gradient strengths and frequencies without sacrificing the precision of the measurements. This could be useful in reducing imaging time so that OG techniques can be used in clinical settings.
  相似文献   

9.

Objective

This study evaluates the inter-site and intra-site reproducibility of 7 Tesla brain imaging and compares it to literature values for other field strengths.

Materials and methods

The same two subjects were imaged at eight different 7 T sites. MP2RAGE, TSE, TOF, SWI, EPI as well as B1 and B0 field maps were analyzed quantitatively to assess inter-site reproducibility. Intra-site reproducibility was measured with rescans at three sites.

Results

Quantitative measures of MP2RAGE scans showed high agreement. Inter-site and intra-site reproducibility errors were comparable to 1.5 and 3 T. Other sequences also showed high reproducibility between the sites, but differences were also revealed. The different RF coils used were the main source for systematic differences between the sites.

Conclusion

Our results show for the first time that multi-center brain imaging studies of the supratentorial brain can be performed at 7 T with high reproducibility and similar reliability as at 3T. This study develops the basis for future large-scale 7 T multi-site studies.
  相似文献   

10.

Objectives

The purpose of this study was to assess the reproducibility of substantia nigra pars compacta (SNpc) and locus coeruleus (LC) delineation and measurement with neuromelanin-sensitive MRI.

Materials and methods

Eleven subjects underwent two neuromelanin-sensitive MRI scans. SNpc and LC volumes were extracted for each scan. Reproducibility of volume and magnetization transfer contrast measurements in SNpc and LC was assessed using intraclass correlation coefficients (ICC) and dice similarity coefficients (DSC).

Results

SNpc and LC volume measurements showed excellent reproducibility (SNpc-ICC: 0.94, p < 0.001; LC-ICC: 0.96, p < 0.001). SNpc and LC were accurately delineated between scans (SNpc-DSC: 0.80 ± 0.03; LC-DSC: 0.63 ± 0.07).

Conclusion

Neuromelanin-sensitive MRI can consistently delineate SNpc and LC.
  相似文献   

11.

Objective

Measuring the pure form of GABA has become increasingly important because of its association with behaviour and certain pathologies. The aim of this study was to assess the reproducibility of GABA measurements using a shim and motion navigated MEGA-SPECIAL sequence with LCModel, jMRUI and GANNET software.

Materials and methods

Motion and shim navigated MEGA-SPECIAL scans were acquired in 20 healthy subjects. Two acquisitions were performed for each of two regions: the anterior cingulate (ACC) and medial-parietal (PAR) cortices. Absolute GABA concentration (\({\text{GABA}}_{{{\text{H}}_{2} {\text{O}}}}\)) and GABA-to-Creatine ratio (GABA/Cr) were quantified using the three software packages.

Results

Using the within-subject coefficient of variation (CVws) as an index, reproducibility for both GABAH20 and GABA/Cr ranged from 13 to 22 % in the ACC and 13 to 18 % in PAR using the three software packages.

Conclusion

Based on CVws, GABA concentrations in both the ACC and PAR are reproducible using a shim and motion navigated MEGA-SPECIAL sequence with any of the three software packages, thus demonstrating the ability to quantify the pure form of GABA using these software in studies relating GABA to pathology and healthy behaviour.
  相似文献   

12.

Object

The objective of this study is to propose a modified VARiable PROjection (VARPRO) algorithm specifically tailored for fitting the intravoxel incoherent motion (IVIM) model to diffusion-weighted magnetic resonance imaging (DW-MRI) data from locally advanced rectal cancer (LARC).

Materials and methods

The proposed algorithm is compared with classical non-linear least squares (NLLS) analysis using the Levenberg-Marquardt (LM) algorithm and with two recently proposed algorithms for ‘segmented’ analysis. These latter two comprise two consecutive steps: first, a subset of parameters is estimated using a portion of data; second, the remaining parameters are estimated using the whole data and the previous estimates. The comparison between the algorithms was based on the \(R^2\) goodness-of-fit measure: performance analysis was carried out on real data obtained by DW-MRI on 40 LARC patients.

Results

The performance of the proposed algorithm was higher than that of LM in 64 % of cases; ‘segmented’ methods were poorer than our algorithm in 100 % of cases.

Conclusion

The proposed modified VARPRO algorithm can lead to better fit of the IVIM model to LARC DW-MRI data compared to other techniques.
  相似文献   

13.

Object

Most early methods to infer axon diameter distributions using magnetic resonance imaging (MRI) used single diffusion encoding sequences such as pulsed gradient spin echo (SE) and are thus sensitive to axons of diameters > 5 μm. We previously simulated oscillating gradient (OG) SE sequences for diffusion spectroscopy to study smaller axons including the majority constituting cortical connections. That study suggested the model of constant extra-axonal diffusion breaks down at OG accessible frequencies. In this study we present data from phantoms to test a time-varying interstitial apparent diffusion coefficient.

Materials and Methods

Diffusion spectra were measured in four samples from water packed around beads of diameters 3, 6 and 10 μm; and 151 μm diameter tubes. Surface-to-volume ratios, and diameters were inferred.

Results

The bead pore radii estimates were 0.60±0.08 μm, 0.54±0.06 μm and 1.0±0.1 μm corresponding to bead diameters ranging from 2.9±0.4 μm to 5.3±0.7 μm, 2.6±0.3 μm to 4.8±0.6 μm, and 4.9±0.7 μm to 9±1 μm. The tube surface-to-volume ratio estimate was 0.06±0.02 μm?1 corresponding to a tube diameter of 180±70 μm.

Conclusion

Interstitial models with OG inferred 3-10 μm bead diameters from 0.54±0.06 μm to 1.0±0.1 μm pore radii and 151 μm tube diameters from 0.06±0.02 μm?1 surface-to-volume ratios.
  相似文献   

14.

Objective

To accelerate a passive tracking sequence based on phase-only cross correlation (POCC) using simultaneous slice excitation.

Methods

For magnetic resonance (MR)-guided biopsy procedures, passive markers have been proposed that can be automatically localized online using a POCC-based tracking sequence. To accelerate the sequence, a phase-offset multiplanar (POMP) excitation technique was implemented to acquire tracking images. In a phantom experiment, the POMP–POCC sequence was tested and compared with the sequential non-accelerated version in terms of duration and accuracy. Further, technical feasibility of the POMP–POCC sequence was tested in a patient undergoing a prostate biopsy.

Results

The temporal resolution of the POMP–POCC tracking sequence is accelerated by 33% compared with the sequential approach. In phantom experiments, the POMP–POCC and sequential sequences yielded the same targeting accuracy of 1.6?±?0.7 mm. Technical proof of concept of the new sequence could be demonstrated in a successful in vivo prostate biopsy.

Conclusion

POMP–POCC tracking can substantially reduce the duration of localization of passive markers in MR-guided needle interventions without compromising targeting accuracy.
  相似文献   

15.

Objective

In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields.

Materials and methods

An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils.

Results

A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter.

Conclusions

The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.
  相似文献   

16.

Objective

To evaluate the feasibility of in vivo measurement of the fatty acid (FA) composition of breast adipose tissue by MRS on a clinical platform.

Material and methods

MRS experiments were performed at 3 T, using a STEAM sequence, on 25 patients diagnosed with breast cancer. MR spectra, acquired on healthy breast tissue, were analysed with the LCModel.

Results

The measured values of the saturated fatty acid (SFA), mono-unsaturated fatty acid (MUFA) and poly-unsaturated fatty acid (PUFA) fractions were 23.8 ± 7.1 %, 55.4 ± 6.8 % and 20.8 ± 4.4 %, respectively.The values of SFA, MUFA and PUFA observed in the current study are in the same range as those found in two previous studies performed at 7 T.

Conclusion

The results of the current study show that it is possible to quantify the fatty acid composition of breast tissue in vivo in a clinical setting (3 T).
  相似文献   

17.

Objective

Ultrahigh field MRI provides great opportunities for medical diagnostics and research. However, ultrahigh field MRI also brings challenges, such as larger magnetic susceptibility induced field changes. Parallel-transmit radio-frequency pulses can ameliorate these complications while performing advanced tasks in routine applications. To address one class of such pulses, we propose an optimal-control algorithm as a tool for designing advanced multi-dimensional, large flip-angle, radio-frequency pulses. We contrast initial conditions, constraints, and field correction abilities against increasing pulse trajectory acceleration factors.

Materials and methods

On an 8-channel 7T system, we demonstrate the quasi-Newton algorithm with pulse designs for reduced field-of-view imaging with an oil phantom and in vivo with scans of the human brain stem. We used echo-planar imaging with 2D spatial-selective pulses. Pulses are computed sufficiently rapid for routine applications.

Results

Our dataset was quantitatively analyzed with the conventional mean-square-error metric and the structural-similarity index from image processing. Analysis of both full and reduced field-of-view scans benefit from utilizing both complementary measures.

Conclusion

We obtained excellent outer-volume suppression with our proposed method, thus enabling reduced field-of-view imaging using pulse trajectory acceleration factors up to 4.
  相似文献   

18.

Object

We aimed to modify our previously published method for arterial input function measurements for evaluation of cerebral perfusion (dynamic susceptibility contrast MRI) such that it can be applied in humans in a clinical setting.

Materials and methods

Similarly to our previous work, a conventional measurement sequence for dynamic susceptibility contrast MRI is extended with an additional measurement slice at the neck. Measurement parameters at this slice were optimized for the blood signal (short echo time, background suppression, magnitude and phase images). Phase-based evaluation of the signal in the carotid arteries is used to obtain quantitative arterial input functions.

Results

In all pilot measurements, quantitative arterial input functions were obtained. The resulting absolute perfusion parameters agree well with literature values (gray and white matter mean values of 46 and 24 mL/100 g/min, respectively, for cerebral blood flow and 3.0% and 1.6%, respectively, for cerebral blood volume).

Conclusions

The proposed method has the potential to quantify arterial input functions in the carotid arteries from a direct measurement without any additional normalization.
  相似文献   

19.

Objectives

The accuracy and precision of the parallel RF excitations are highly dependent on the spatial and temporal fidelity of the magnetic fields involved in spin excitation. The consistency between the nominal and effective fields is typically limited by the imperfections of the employed hardware existing both in the gradient system and the RF chain. In this work, we experimentally presented highly improved spatially tailored parallel excitations by turning the native hardware accuracy challenge into a measurement and control problem using an advanced field camera technology to fully correct parallel RF transmission experiment.

Materials and methods

An array of NMR field probes is used to measure the multiple channel RF pulses and gradient waveforms recording the high power RF pulses simultaneously with low frequency gradient fields on equal time basis. The recorded waveforms were integrated in RF pulse design for gradient trajectory correction, time imperfection compensation and introduction of iterative RF pre-emphasis.

Results

Superior excitation accuracy was achieved. Two major applications were presented at 7 Tesla including multi-dimensional tailored RF pulses for spatially selective excitation and slice-selective spoke pulses for \(B_{1}^{ + }\) mitigation.

Conclusion

Comprehensive field monitoring is a highly effective means of correcting for the field deviations during parallel transmit pulse design.
  相似文献   

20.

Objectives

We describe measurement of skeletal muscle kinetics with multiple echo diffusion tensor imaging (MEDITI). This approach allows characterization of the microstructural dynamics in healthy and pathologic muscle.

Materials and methods

In a Siemens 3-T Skyra scanner, MEDITI was used to collect dynamic DTI with a combination of rapid diffusion encoding, radial imaging, and compressed sensing reconstruction in a multi-compartment agarose gel rotation phantom and within in vivo calf muscle. An MR-compatible ergometer (Ergospect Trispect) was employed to enable in-scanner plantar flexion exercise. In a HIPAA-compliant study with written informed consent, post-exercise recovery of DTI metrics was quantified in eight volunteers. Exercise response of DTI metrics was compared with that of T2-weighted imaging and characterized by a gamma variate model.

Results

Phantom results show quantification of diffusivities in each compartment over its full dynamic rotation. In vivo calf imaging results indicate larger radial than axial exercise response and recovery in the plantar flexion-challenged gastrocnemius medialis (fractional response: nT2w?=?0.385?±?0.244, nMD?=?0.163?±?0.130, nλ1?=?0.110?±?0.093, nλrad?=?0.303?±?0.185). Diffusion and T2-weighted response magnitudes were correlated (e.g., r?=?0.792, p?=?0.019 for nMD vs. nT2w).

Conclusion

We have demonstrated the feasibility of MEDITI for capturing spatially resolved diffusion tensor data in dynamic systems including post-exercise skeletal muscle recovery following in-scanner plantar flexion.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号