首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360°C in a wavelength range from 1.2 μm up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka–Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (<1 cm−1) at wavelengths between 2 μm and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as "edge to shorter wavelengths."]  相似文献   

2.
The focus of this study was to determine the mechanisms responsible for the microstructural changes of plasma-sprayed 7 wt% Y2O3–ZrO2 thermal barrier coatings with annealing from 800° to 1400°C. Mullins's thermal grooving theories have been applied to plasma-sprayed TBCs to determine the dominant mass transport mechanism at various temperatures. Grain-boundary groove widths were measured as a function of annealing time and temperature using atomic force microscopy (AFM). The same collection of grains was analyzed after progressive heat treatments. Surface diffusion was found to be the dominant diffusion mechanism at 1000°C, corresponding to the disappearance of intralamellar cracks at that temperature. At 1100°C, both surface and volume diffusion were active. Volume diffusion, found to be the dominant diffusion mechanism at 1200°C and above, was responsible for the sintering of interlamellar pores observed from AFM analysis of a single, progressively heat-treated interlamellar boundary. Surface roughening was observed to coarsen with increased annealing time and disappear with increased annealing temperature.  相似文献   

3.
The microstructures of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings are complex, contributing to challenges in establishing microstructure–thermal conductivity relationships. Furthermore, the dynamic evolution of microstructure and properties during service offers a significant challenge in defining design strategies and extended coating performance. In this paper, the relationship between microstructure and thermal conductivity is investigated for three sets of plasma-sprayed YSZ coating systems prepared using different morphology powders, different particle size distributions, and controlled modification of particle states through plasma torch parameters. Both ambient and temperature-dependent thermal conductivity were conducted in the as-sprayed and thermally aged states. The results suggest that a range of thermal conductivities can be achieved from the coatings, offering potential for microstructural tailoring for desired performance. The results also demonstrate that different as-deposited microstructures display varying propensity for sintering and these attributes need to be considered in the design and manufacturing cycle. This expansive study of a range of coatings has also allowed synthesis of the results through thermal conductivity–porosity maps and has allowed elucidation of the contributing microstructural components for both the ambient and high-temperature thermal conductivity. Considering that the operating thermal transport mechanisms are different at these two temperature extremes, such mapping strategies are of value to both science and technology.  相似文献   

4.
Creep Behavior of Plasma-Sprayed Zirconia Thermal Barrier Coatings   总被引:1,自引:0,他引:1  
Thermally sprayed ceramic coatings deposited from nanostructured feedstock powder have often demonstrated improved properties relative to coatings produced from conventional powders. This type of coating has been reported to exhibit better wear resistance and higher adhesion strength compared with conventional deposits. Powder consisting of hollow spherical particles has been reported to produce coating with lower unmelted particles and lower thermal conductivity. In this study, the thermo-mechanical properties of plasma-sprayed yttria-stabilized zirconia coatings deposited using each of these types of powder were investigated. Creep strain and creep rate were measured using free-standing thick coatings loaded in a four-point bend configuration at temperatures ranging from 800° to 1200°C in air under a range of loads. The creep exponent and activation energy were determined.  相似文献   

5.
The low bonding strength between hydroxyapatite (HA) and the metal substrate interface of plasma-sprayed HA coating has been a point of potential weakness in its application as a biomedical prosthesis. In the present study, yttria-stabilized (8 wt%) zirconia (YSZ) has been used to enhance the mechanical properties of HA coatings. The effects of YSZ additions (in the range 10–50 wt%) on the phase composition, microstructure, bond strength, elastic modulus, and fracture toughness of plasma-sprayed HA/YSZ composite coatings have been studied. The results indicated that decomposition of HA during plasma spraying was reduced significantly with the addition of zirconia. The higher the zirconia content, the lower the amount of calcium oxide, tricalcium phosphate, and tetracalcium phosphate formed in the coatings. In addition, there was a trace of calcium zirconate formed when less than 30 wt% zirconia was present. A solid solution of HA mixed with YSZ formed during plasma spraying; however, the amount of unmelted particles increased as the zirconia increased. The mechanical properties of the HA/YSZ composite coatings, such as bond strength, elastic modulus, and fracture toughness, increased significantly as the contents of zirconia increased.  相似文献   

6.
A multicomponent microstructure model is applied in ultrasmall-angle X-ray scattering studies of two groups of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings (TBCs). One group was sprayed from a single powder feedstock using controlled processing conditions. The other group included three different feedstock morphologies (obtained from different manufacturing methods), each with a similar particle size distribution and sprayed under the same average controlled processing conditions. The microstructure is quantitatively related to the feedstock morphology and processing conditions. Relationships are explored among these microstructures and the coating properties (e.g., thermal conductivity, elastic modulus). The degree of microstructural anisotropy is demonstrated to be pore-size dependent, being more pronounced for larger pores, and more sensitive to feedstock morphology ( powder processing ) than to spray processing. The microstructure analysis indicates two broad distributions of interlamellar pores, which combined, account for 70%–80% of the pore volume. The total porosity is found to increase with decreasing particle temperature or velocity. For all coatings, a negative linear relationship exists between thermal conductivity and total porosity. Comparison of the new analysis is made with earlier small-angle neutron scattering results, and implications are considered for a more general application of this metrology in TBC microstructure design.  相似文献   

7.
The temperature dependence of the thermal conductivity of plasma-spray-deposited monolithic coatings, as well as multilayer coatings that consisted of Al2O3 and ZrO2 that was stabilized by 8% Y2O3 (YSZ), was investigated. The coatings exhibited a large reduction in thermal conductivity at all temperatures, when compared to the bulk monolithic Al2O3 and YSZ. This reduction was due to porosity as well as thermal resistance that was caused by interfaces in the coatings. The largest decrease in the thermal conductivity of the coatings, relative to monolithic fully dense materials, was due to splat interfaces within each layer, as well as the coating/substrate interface. On the other hand, the multilayer coatings showed little variation in the thermal conductivity, relative to the number of layers, which suggests that the influence of interlayer interfaces on heat transfer is relatively small. A one-dimensional analysis of steady-state heat transfer has been presented to illustrate the significance of porosity, splat interfaces, and interlayer interfaces, with respect to the overall thermal conductivity of multilayer coatings.  相似文献   

8.
Investigations of changes in phase composition, mechanical properties, and microstructure of ZrO2-based plasma-sprayed thermal barrier coatings (TBCs) with 8 mol% CeO2, 19.5 mol% CeO2/1.5 mol% Y2O3, 35 mol% CeO2, and 4.5 mol% Y2O3 after long-term heat treatments at typical operation temperatures (1000°–1400°C) are presented. Experimental studies include X-ray diffractometry, mechanical testing, and scanning electron microscopy. Thermal cycling experiments also have been performed. TBCs with 8 mol% CeO2 contain mainly the tetragonal equilibrium phase and, therefore, show rapid failure because of the high amount of tetragonal → monoclinic phase transformation, even after relatively short heat treatments (1250°C/1 h). In the case of the other systems that consist mainly of the tetragonal or cubic nonequilibrium phases, TBCs with 19.5 mol% CeO2/1.5 mol% Y2O3 or 35 mol% CeO2 reveal a smaller amount of monoclinic phase after long-term heat treatments (1250°C/1000 h) compared with TBCs containing 4.5 mol% Y2O3. TBCs containing 35 mol% CeO2 show a higher degree of sintering than the TBCs with 19.5 mol% CeO2/1.5 mol% Y2O3 and, therefore, a greater increase of the elastic modulus. Among the systems investigated, TBCs containing 4.5 mol% Y2O3 exhibit the highest resistance to failure in thermal-cycling experiments.  相似文献   

9.
Yttria-stabilized (8.6 mol% YO1.5) zirconia thermal barrier coatings evolve at high temperatures from the "non-transformable," metastable tetragonal-prime phase in their as-deposited condition to a mixture of the tetragonal and cubic phases. The kinetics of the transformation at 1200° and 1425°C are reported based on X-ray diffraction measurements. Complementary Raman spectroscopy measurements indicate a sharpening of the tetragonal bands at 263 and 465 cm−1 that is attributed to a systematic decrease in disorder of the Y3+ and oxygen vacancies with annealing. No transformation to the monoclinic form of zirconia is observed immediately after high-temperature treatment. However, partial transformation to monoclinic occurs after a prolonged time (months) at room temperature in those samples treated at 1425°C, indicating the development of isothermal martensite.  相似文献   

10.
The origins of darkening of 8 wt% Y2O3-ZrO2 air plasmasprayed (APS) and low-pressure plasma-sprayed (LPPS) thermal barrier coatings (TBC) have been studied using X-ray photoelectron spectroscopy. The change of valence states of zirconium, due to the reduction of ZrO2 to Zr2O3, was responsible for darkening of TBC. Quantification of Zr3+ oxide was related both to the black color of TBC and to the spraying technologies and parameters. Furthermore, impurity (Fe, Al, Si, and Na) segregation and exsolution phenomena were monitored as a function of the air thermal treatment (up to 1473 K) and it was demonstrated not to be the origin of darkening.  相似文献   

11.
12.
Thermal barrier coatings (TBCs) with different levels of segmentation crack density were produced by spraying two types of ZrO2–8Y2O3 powders. The fused and crushed powder has a greater capability of forming segmented coatings than the hollow sphere (HOSP) one. The highly segmented coatings reveal much lower porosity compared with traditionally sprayed coatings, thereby compromising the property of thermal insulation of TBCs. Microstructure and thermal conductivity of the HOSP coatings are more sensitive to the changes in spray conditions. Segmentation cracks had a strong influence in decreasing Young's modulus of coatings. Fifty hours heat treatment at 1250°C had little effect on the mechanical property of the highly segmented coatings.  相似文献   

13.
14.
The Raman piezo-spectroscopic constants of tetragonal prime yttria-stabilized zirconia under uniaxial compression have been determined. Although the Raman band at 461 cm−1 is not the most intense, it is the most appropriate peak for stress measurement because of its large stress-induced peak shift and the minimum overlap with the other Raman peaks. The peak separation between bands at 258 and 461 cm−1 or 258 and 638 cm−1 can also be used to measure stress.  相似文献   

15.
Polished cross sections of plasma-sprayed yttria-stabilized zirconia coatings deposited using different process parameters were prepared with both hot- and vacuum-mounting techniques and investigated by image analysis. It was found that polishing-induced pull-outs were evidently present on the hot-mounted cross sections, and that the perimeter of these pull-outs could be described statistically by means of fractal analysis. In this work, values of the corresponding fractal dimension range from 1.45–1.54; they increase linearly while increasing fracture toughness, and decrease with the increase in porosity of the coatings. Thus, this fractal dimension may be regarded as a measure of the fracture toughness of the coatings, but only for hot-mounted samples.  相似文献   

16.
One failure mechanism of thermal barrier coatings composed of yttria-stabilized zirconia (YSZ) has been proposed to be caused, in part, by the transformation of the tetragonal phase of YSZ into its monoclinic phase. Normally, studies of phase evolution are performed by X-ray diffraction (XRD) and by evaluating the intensities of a few diffraction peaks for each phase. However, this method misses some important information that can be obtained with the Rietveld method. Using Rietveld's refinement of XRD patterns, we observed, upon annealing of YSZ coatings, an increase of cubic phase content, a reduction in as-deposited tetragonal phase content, and the appearance of a new tetragonal phase having a lower yttria content that coexists with the as-deposited tetragonal phase of YSZ.  相似文献   

17.
The influence of tetragonality, which is defined as the lattice parameter ratio c / a , on the tetragonal-to-monoclinic phase transformation during hydrothermal aging was investigated in yttria-stabilized zirconia coatings. The yttria content was adjusted in the range of 4–8 mass% (denoted as x YZ, where x = 4–8 and YZ represents the yttria-stabilized zirconia). The tetragonality of the zirconia in the as-sprayed coatings was less than that in the powders. To change the tetragonality for each yttria content, the coatings were annealed at 1273 K before aging. Without annealing, the phase transformation was prevented only in 8YZ. When annealing was applied, an increase of the tetragonality (i.e., recovery of the tetragonality) was observed, and transformation during hydrothermal aging was also suppressed in 6YZ. It was concluded that the increase in tetragonality that occurred without a change in the yttria content was suggested to be caused by the lattice relaxation of the tetragonal phase, and this relaxation is believed to cause a reduction of the critical yttria concentration, thus preventing the phase transformation.  相似文献   

18.
19.
Phase constituents and transformations of plasma-sprayed thermal barrier coatings (TBCs) with CeO2-stabilized ZrO2 (CSZ; 16–26 wt% CeO2) have been investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The as-coated CSZ coatings with 16 and 18 wt% CeO2 consisted only of the nonequilibrium tetragonal ( t ') phase. A mixture of the t ' and the nonequilibrium cubic ( c ') phases was observed for the as-coated CSZ coatings containing 20–26 wt% CeO2. During 65 min cyclic oxidation at 1135°C (45 min hold time) in air, the t ' or the mixture of the t ' and the c ' phases decomposed to the equilibrium tetragonal ( t ) and the equilibrium cubic ( c ) phases. Some of the t phase transformed to the monoclinic ( m ) phase on cooling. More m phase was observed to develop in the CSZ coating containing 16 wt% CeO2 than in the other coatings. More m phase was observed on the top surface than on the bottom surface of the CSZ coating. Spalling of the plasma-sprayed CSZ coating during thermal cycling occurred after 230 cycles for the CSZ coating containing 16 wt% CeO2, whereas the lifetime of the CSZ coatings with 18–26 wt% CeO2 ranged between 320 and 340 cycles.  相似文献   

20.
Chemically uniform, high-purity, yttria-stabilized zirconia (YSZ) powders were prepared by emulsion hydrolysis of the metal alkoxides, acetates, and mixtures of alkoxides and acetates. Both the morphology and particle size of the powders can be controlled by varying the hydrolysis conditions. Spherical or granular powders with particle sizes ranging from submicrometer to a few hundred micrometers were obtained. X-ray diffraction and EDX results showed that yttria was evenly distributed throughout the zirconia particles. The crystalline phase of the powders after calcination at 800°C was 100% nontransformable tetragonal. The powders were successfully sprayed by a plasma coating technique on stainless steel coupons, and the coatings were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号