首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
以碳毡为预制体,N2为稀释气体,甲烷为碳源前驱体,其分压为10 kPa,滞留时间为0.15 s的工艺条件下,研究了不同沉积温度对微波热解化学气相渗透(chemical vapor infiltration,CVI)工艺制备碳/碳复合材料的致密化速率、样品的体积密度及其密度均匀性的影响,并对其组织结构进行了观察.分析了沉积温度对微波热解CVI工艺制备碳/碳复合材料的密度与组织结构的变化规律.结果表明:在微波热解CVI工艺中,随着沉积温度的降低,碳毡预制体的致密化速率及最终体积密度呈现先升后降,1100 ℃沉积制备复合材料的密度均匀性最好,并呈现从内到外逐步沉积的规律.热解碳的织构主要为中等织构.  相似文献   

2.
旋转CVI快速沉积热解碳基体   总被引:4,自引:2,他引:2  
采用一种新的CVI工艺(旋转CVI)进行了二维碳布沉积热解碳基体的实验研究.通过实验优化工艺参数,在低压(5 kPa)、高温(1 100 ℃)、体积分数为62.5%的C3H6与3.5 mm.min-1的碳布旋转线速度条件下,获得了微观孔隙中0.25 μm.h-1的热解碳沉积速度、约7%的C3H6转化率与理想的热解碳基体形貌.分析了旋转CVI工艺中沉积温度和C3H6浓度等分别对沉积速度、热解碳基体形貌及C3H6转化率的影响.  相似文献   

3.
快速液相气化法制备碳/碳复合材料研究进展   总被引:7,自引:3,他引:7  
快速液相气化沉积是目前高温复合材料制备工艺中致密化效率最快的一种方法,比传统等温CVI技术要快2个数量级以上,可大幅度降低制备成本。文中介绍了这一快速致密化技术的基本原理,方法特点,分析了该技术快速致密化的根本原因;概述及探讨了国内外对该技术在工艺及模拟方面的研究现状及存在的问题;最后展望了液相气化致密技术的应用前景。  相似文献   

4.
本文研究了用化学气相渗工艺的均热法制备炭纤维增强碳化硅(C/SiC)复合材料,其中有部分材料在沉积碳化硅之前先沉积少量热解碳,以作为界面层。对有界面层和无界面层的材料进行了拉伸试验。用金相显微镜和扫描电镜观察了材料微观结构及继口形貌。结果表明,C/SiC材料力学性能主要取决于纤维与基体的界面。有热解碳界面层的C/SiC材料,在拉伸断裂时出现大范围脱粘,断口类似毛刷,材料强度大,断裂功也大,有很大的  相似文献   

5.
研究了不同缝合间距和不同碳布对碳/碳缝合复合材料力学性能的影响.结果 表明:在相同缝合间距下,缝合预制体的单元层厚度越薄,其碳/碳复合材料的综合性能越优异,且相比单元层性能,单元层厚度对其碳/碳复合材料的性能影响更显著;随着缝合间距变小,碳/碳复合材料拉伸强度整体呈现下降趋势,且降低幅度均增大,弯曲强度和层间强度呈现增加趋势,且增加幅度均增大.  相似文献   

6.
乔志军 《天津化工》2011,25(3):1-2,7
本文综述了碳/碳复合材料力学性能的研究进展,包括碳纤维、基体炭、界面性能、制备工艺及工艺参数等对碳/碳复合材料力学性能的影响。同时简单介绍了当今单向碳/碳复合材料力学性能的表征手段。希望对碳/碳复合材料力学性能的研究及应用提供帮助。  相似文献   

7.
碳/碳复合材料作为新型结构材料具有优异的力学性能、低热膨胀系数、耐热冲击以及耐烧蚀等优异性能,在较宽的温域范围内拥有较好的抗蠕变性能和较高的强度保留率,是新材料领域重点研究和开发的一类战略性高技术材料。本文阐述了碳/碳复合材料的优势以及综述了碳/碳复合材料的发展阶段,重点针对航空航天、光伏产业、汽车、半导体、工业领域以及生物医学等领域进行应用探索,本文认为碳/碳复合材料正从过去的双元复合逐步向多元复合的方向发展,未来碳/碳复合材料会向多功能复合材料方向发展,其应用领域也将更加广泛。  相似文献   

8.
本发明涉及一种碳纤维与热解碳基体中间相沥青过渡层复合材料的制备办法。先将碳纤维预制体放红不锈钢浸渍罐中,用中间相沥青粉包埋后放入浸渍炉,存惰性气氛保护下进行真空浸渍,然后存碳化炉中,在惰性气氛保护下,采用不同升温速率分段升温、保温,进行碳化,然后放入化学气相沉积炉中用化学气相渗透法进行沉积,制成中间相沥青过渡层碳/碳复合材料成品。  相似文献   

9.
研究了沉积温度、反应气浓度等因素对沉积过程的影响,并对所得试样的微观组织结构及其内部孔隙的分布规律进行了分析。研究表明,当沉积温度低于900℃时,可以避免或减少沉积过程中炭黑的生成,在该前提下,正压CVI工艺可在较短时间内制备出具有合理微观组织结构的C/C复合材料制作,因此提高了反应气体的利用率,正压CVI工艺是一种低成本的C/C复合材料制备工艺。  相似文献   

10.
分析了采用限域变温强制流动CVI工艺制备C/C复合材料的组织及力学性能的特点,结合C/C复合材料的组织形成规律和组织对性能的影响规律,详细研究了在同一工艺条件下所获得的具有不同组织和不同力学性能的C/C复合材料的力学性能及组织分布规律,并从微观组织结构的角度对力学性能的变化规律给予解释。  相似文献   

11.
The dispersion of nanotubes in polymer matrices has been investigated as a means of deriving new and advanced engineering materials. These composite materials have been formed into fibers and thin films and their mechanical and electrical properties determined. The nanotube concentration at which conductivity was initiated (the percolation threshold) varied with host polymer. In poly(propylene), this was as low as 0.05 vol.‐%, while higher concentrations were required for polystyrene and particularly for ABS. There was a small increase in elastic modulus and decrease in tensile strength at low nanotube loading, but as the concentration was increased there was a progressive increase in both strength and stiffness.  相似文献   

12.
先进陶瓷基复合材料制备技术-CVI法现状及进展   总被引:7,自引:2,他引:5  
化学气相渗透法(CVI)是制备先进陶瓷基复合材料最赋潜力的技术.本文概要阐述了CVI法的原理与动力学机制,论述了CVI先进陶瓷基复合材料中纤维、基体、界面的研究现状,对不同类型的CVI工艺及目前的CVI模拟技术作了一定的评价,提出了CVI技术的发展方向和研究课题.  相似文献   

13.
Plane-woven-fabric carbon-fiber-reinforced SiC/C matrix composites were fabricated at 1450°C via reaction bonding and impregnation with phenolic resin. The relationship between the flexural strength and the open porosity of the composites is dependent on the heat-treatment temperature before the impregnation. The flexural strength of composites heat-treated at 1000°C (open porosity of ∼15%) was ∼300 MPa, whereas that of composites heat-treated at 1450°C (open porosity of ∼12%) was only ∼240 MPa. The heat-treatment temperatures before the impregnation step might control the interface properties between the fiber and the matrix.  相似文献   

14.
研究了采用Si,N4与Al的混合粉,经压制、烧结制备AIN/Al-Si复合材料的技术方法。试验结果表明:AIN的反应生成机制属于一种连续渐进式反应形成过程,即于高温下液相Al中的Al原予渗入Si3N4的晶体点阵取代Si原予而逐渐使之向AIN晶体点阵转化的过程。被取代的Si原予从固相Si3N4中析出,扩散溶入液相Al中,冷却后形成Al-Si舍金固溶体,一般呈网状分布于AIN晶体相的周围。新生成的AIN与Al-Si合金相之间表现出很好的界面亲和性。  相似文献   

15.
研究了采用Si3N4与Al的混合粉,经压制、烧结制备AlN/Al-Si复合材料的技术方法.试验结果表明:AlN的反应生成机制属于一种连续渐进式反应形成过程,即于高温下液相Al中的Al原子渗入Si3N4的晶体点阵取代Si原子而逐渐使之向AlN晶体点阵转化的过程.被取代的Si原子从固相Si3N4中析出,扩散溶入液相Al中,冷却后形成Al-Si合金固溶体,一般呈网状分布于AlN晶体相的周围.新生成的AlN与Al-Si合金相之间表现出很好的界面亲和性.  相似文献   

16.
原位反应法制备Cr2AlC-Fe基复合材料   总被引:1,自引:0,他引:1  
采用原位反应法制备了Cr2AlC-Fe基复合材料,通过热分析、X射线衍射、扫描电子显微镜和三点弯曲实验研究了原位反应的烧结工艺对产物物相、显微结构和性能的影响.结果表明:通过高温原位反应,原料中碳化铝铬发生了分解,所生成的碳铬化合物在Fe晶界形成了网络状陶瓷增强结构,所制备的复合材料在室温下具有较好的强度和韧性.但随着碳化铝铬含量的增加,复合材料的强度与断裂韧性之间呈负相关关系.当原料中碳化铝铬的含量为50%,烧结温度为1 300℃,在30 MPa压力下保温30min时,复合材料的抗弯强度达1417.05 MPa,但断裂韧性只有18 MPa·m1/2.  相似文献   

17.
The formation mechanism of ZrSiO4 in the cordierite-ZrO2 system was studied in the temperature range of 1250° to 1400°C by X-ray diffraction analysis and discussed by analyzing experimental data using some reported reaction models. Nuclei growth models were found to describe the reaction well, and a satisfactory fit was obtained by applying the Avrami equation to estimate the reaction rate constant κ. Different values of the time exponent m were obtained at different temperatures: 0.32 at 1250°C, 0.34 at 1300°C, 0.39 at 1350°C, and 0.49 at 1400°C. The results indicate that there is a progressive change in reaction mechanism.  相似文献   

18.
研究碳纳米管/炭黑/天然橡胶复合材料的性能。结果表明:碳纳米管的加入能明显提高复合材料的定伸应力,具有一维取向排列且长径比较大的碳纳米管Flotube 7000对物理性能的提高作用明显;碳纳米管与炭黑并用对提高复合材料的导热性能具有一定的负协同效应。  相似文献   

19.
陶瓷基复合材料和碳/碳复合材料由于其在高温下优越的热-力学性能成为了航空发动机热端部件和航天器热防护结构的理想选材.本文首先对近三十年来国内外一些拉伸试验的研究内容和试验方法进行了归纳总结,分析了连续纤维层合板、二维纺织、三维纺织以及Z-Pin、针刺和2.5维等特殊形式的拉伸试验研究进展;然后对拉伸试验中试件的形状和尺寸以及试验仪器与设备进行了介绍;最后对陶瓷基复合材料与碳/碳复合材料拉伸试验研究发展趋势进行了展望.  相似文献   

20.
A Si–SiC coating was prepared by hot‐pressing reactive sintering (HPRS) technique for protecting carbon/carbon (C/C) composites against oxidation. The Si–SiC coating has a dense and crack‐free structure with a thickness of 70–90 μm. The Si–SiC coating by HPRS has a higher SiC content and lower Si content than the coating by pressure‐less reactive sintering (PRS). It also exhibits better oxidation‐protective ability than that prepared by PRS. With hot‐pressing, the flexural strength of the Si–SiC coated C/C composites decreases from 121 MPa to 99 MPa, and the interface bonding strength increases from 6 MPa to 10 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号