首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The task scheduling in heterogeneous distributed computing systems plays a crucial role in reducing the makespan and maximizing resource utilization. The diverse nature of the devices in heterogeneous distributed computing systems intensifies the complexity of scheduling the tasks. To overcome this problem, a new list-based static task scheduling algorithm namely Deadline-Aware-Longest-Path-of-all-Predecessors (DA-LPP) is being proposed in this article. In the prioritization phase of the DA-LPP algorithm, the path length of the current task from all its predecessors at each level is computed and among them, the longest path length value is assigned as the rank of the task. This strategy emphasizes the tasks in the critical path. This well-optimized prioritization phase leads to an observable minimization in the makespan of the applications. In the processor selection phase, the DA-LPP algorithm implements the improved insertion-based policy which effectively utilizes the unoccupied leftover free time slots of the processors which improve resource utilization, further least computation cost allocation approach is followed to minimize the overall computation cost of the processors and parental prioritization policy is incorporated to further reduce the scheduling length. To demonstrate the robustness of the proposed algorithm, a synthetic graph generator is used in this experiment to generate a huge variety of graphs. Apart from the synthetic graphs, real-world application graphs like Montage, LIGO, Cybershake, and Epigenomic are also considered to grade the performance of the DA-LPP algorithm. Experimental results of the DA-LPP algorithm show improvement in performance in terms of scheduling length ratio, makespan reduction rate , and resource reduction rate when compared with other algorithms like DQWS, DUCO, DCO and EPRD. The results reveal that for 1000 task set with deadline equals to two times of the critical path, the scheduling length ratio of the DA-LPP algorithm is better than DQWS by 35%, DUCO by 23%, DCO by 26 %, and EPRD by 17%.  相似文献   

2.
《国际计算机数学杂志》2012,89(11):2221-2243
In this paper we propose task swapping networks for task reassignments by using task swappings in distributed systems. Some classes of task reassignments are achieved by using iterative local task swappings between software agents in distributed systems. We use group-theoretic methods to find a minimum-length sequence of adjacent task swappings needed from a source task assignment to a target task assignment in a task swapping network of several well-known topologies.  相似文献   

3.
基于任务-资源分配图优化选取的网格依赖任务调度   总被引:3,自引:0,他引:3  
任务调度是网格应用系统获得高性能的关键.网格计算中一个大型的应用程序往往被分解为具有依赖关系的多个任务.在资源个体差异较大、广域互连的网格环境下任务间的依赖关系对传统的调度策略提出了新的挑战.任务调度的主要工作是为任务分配资源以及确定任务的执行次序,将依赖任务的可能的资源分配方案表示为任务-资源分配图(T-RAG),在该图的基础上提出了基于T-RAG优化选取的依赖任务调度模型,将依赖任务调度问题转化为图的优化选取问题,解析最优任务-资源分配图可以同时确定资源分配方案和任务的执行次序即为最优调度方案.最后,实现了基于该模型的任务调度算法,该算法与ILHA算法的对比分析表明,在资源差异较大及任务间存在大量数据传输的情况下所提出的算法更优.  相似文献   

4.
This paper deals with the problem of task allocation (i.e., to which processor should each task of an application be assigned) in heterogeneous distributed computing systems with the goal of maximizing the system reliability. The problem of finding an optimal task allocation is known to be NP-hard in the strong sense. We propose a new swarm intelligence technique based on the honeybee mating optimization (HBMO) algorithm for this problem. The HBMO based approach combines the power of simulated annealing, genetic algorithms with a fast problem specific local search heuristic to find the best possible solution within a reasonable computation time. We study the performance of the algorithm over a wide range of parameters such as the number of tasks, the number of processors, the ratio of average communication time to average computation time, and task interaction density of applications. The effectiveness and efficiency of our algorithm are demonstrated by comparing it with recently proposed task allocation algorithms for maximizing system reliability available in the literature.  相似文献   

5.
任务调度技术是并行分布式系统中的关键技术之一,对系统的性能起着重要作用,但通常情况下大型系统的任务调度问题属于NP问题。而现代启发式生物进化算法是找出很多NP问题近似解的有效方法。本文将粒子群算法应用于基于可用性的网格系统调度中,提出了一种调度算法,对算法的性能进行了理论分析和模拟实验。结果表明:和最近文献中的基于可用性的调度算法SSAC相比,所提出的新算法在保证系统资源具有同样的可用性条件下,能够产生更好的调度长度。  相似文献   

6.
    
Energy optimization with time constraint has become a timely and significant challenge for the datacenters. In this paper, a hardware and software collaborative optimization strategy is implemented to minimize the energy cost while satisfying the time constraint of the datacenters. In the hardware aspect, a DVFS‐capable CPU/GPU/FPGA heterogeneous computing infrastructure is built. This infrastructure can adjust its hardware characteristics dynamically in terms of the software run‐time contexts so that the applications can be executed efficiently with less time and lower energy cost. In the software aspect, a deadline‐aware energy‐efficient task scheduling algorithm based on the Q‐learning approach is investigated. This algorithm can adjust its searching directions smartly in terms of the environment feedback so that it can achieve better optimization performance comparing with the traditional genetic algorithm. However, its convergence time is long due to the large amount of training work, making it inappropriate to be applied in the large‐scale datacenters. To ease this problem, we proposed another new algorithm named Rapid Local Convolution Optimization (RLCO) and combine it with the Q‐learning algorithm. By doing this, the convergence time of the Q‐learning mechanism can be decreased significantly. We conducted both the simulation and real‐world experiments to evaluate the performance of our approaches, and the results proved the proposed algorithm running on the DVFS‐capable heterogeneous hardware architecture could decrease the energy cost of the datacenter significantly even if the datacenter is in large scale.  相似文献   

7.
对AUV协同设计平台中多个任务流的调度问题进行建模,将其转换为分布式计算环境下的独立任务在线调度问题。针对系统异构和任务流具有优先级属性的特殊性,提出了一种基于预测的多任务流调度算法,采用统计和预测的方法评估各工作站执行任务的效用,并设计优先级策略和暂停调度策略,保证具有较高优先级的任务流较早分配和执行。实验结果表明,该算法在参数选取适当的情况下,性能优于传统的MCT和MET任务调度算法。  相似文献   

8.
传感器网络能源有效任务分配算法   总被引:3,自引:0,他引:3  
为了延长网络生命期,传感器网络在设计过程中,通常利用节点本身的处理能力,进行网内处理,以减少通信量,节省能量.在传感器网络内引入处理或计算后,应用可以描述为一个任务集及任务之间的数据依赖关系.不同的任务分配方案导致应用执行所需的通信量和计算量不同,从而影响应用执行的能量消耗.在使用任务图对传感器网络应用描述的基础上,提出了传感器网络任务分配模型.由于应用的任务可划分为感知任务集和处理任务集,因而传感器网络中的任务分配可分成感知任务分配和处理任务分配两个阶段.针对处理任务分配,将其建模为二次0-1规划问题,并提出了分布式逐层优化分配算法OALL.仿真实验验证了分布式算法OALL的有效性.  相似文献   

9.
图划分算法是分布式图计算系统里的重要组成部分, 它将一个图划分为若干子图以便在分布式系统中运行, 并将子图上的点和边数据及子图上的计算任务分配到各分区. 异质图是现实世界中广泛存在的一种图, 它是指具有多种节点类型或边类型的图, 在针对异质图的计算过程中, 现有的图划分算法对于异质图的处理没有考虑到以下问题: 在图计算过程中, 不同类型的节点和边携带的数据量可能不同; 不同的节点和边类型, 可能会采用不同的处理算法, 其计算时间也会不同. 针对现有图划分方法的不足, 本文提出一种面向异质图的在线图划分算法OGP-HG算法, 并对现有的GraphX图计算引擎进行改进, 将OGP-HG算法在改进后的图计算引擎中实现. 本文提出的OGP-HG算法通过计算节点划分到不同分区上的负载均衡得分和边划分到不同分区上的数据均衡得分, 得到使异质图负载和内存占用均衡的划分结果. 实验表明, 与传统图划分算法相比, 该算法提高异质图计算效率1.05–1.4倍.  相似文献   

10.
随着大数据和机器学习的火热发展,面向机器学习的分布式大数据计算引擎随之兴起.这些系统既可以支持批量的分布式学习,也可以支持流式的增量学习和验证,具有低延迟、高性能的特点.然而,当前的一些主流系统采用了随机的任务调度策略,忽略了节点的性能差异,因此容易导致负载不均和性能下降.同时,对于某些任务,如果资源要求不满足,则会导...  相似文献   

11.
针对异构环境下相关任务的静态调度问题,以最小化调度长度为主要目标,结合表调度与基于复制的调度思想提出了选择性任务复制调度算法.在任务调度过程中,利用处理器的空闲时间,通过有选择地复制能提前当前任务开始执行时间的父任务来减少任务之间信息传递的通信延迟,有利于后续任务的及时调度,从而缩短整个任务图的并行完成时间.实验结果表明,文中算法在通信量比较大的情况下在时间上优于复杂度相同的HEFT,HNDP及DDS算法,且随着任务图中通信时间/计算时间比值的增加,其优越性也越来越明显.  相似文献   

12.
针对移动边缘计算(MEC)中密集型任务卸载时,系统开销较大和延时抖动明显的问题,提出一种新型资源分配策略。首先在系统时延约束下,分析了系统任务执行开销与终端设备的资源分配机制;其次建立了基于计算卸载和任务分配的联合凸优化目标;最后采用拉格朗日乘子法进行迭代更新得到最优解。仿真结果表明,所提任务卸载与资源分配方案在保证用户服务质量的同时降低了任务执行开销,并有效提升了MEC系统性能。  相似文献   

13.
图划分广泛地应用在许多科学与工程领域,但它应用于并行计算任务分配时,使用无向图表示数据依赖关系,这限制了它的应用(例如,无向图不能表示矩形和非对称依赖关系的应用).为了克服图划分的这个缺点,我们对数据间的依赖关系进行区分(即同一条边区分通信的发送方与接收方),然后基于0-1规划模型化这个问题,并通过互联网上求解优化问题常用的NEOS服务器进行求解,在一些数据集上的实验表明,0-1规划方法优于求解图划分流行的多层划分方法.  相似文献   

14.
Evolutionary computation (EC), a collective name for a range of metaheuristic black-box optimization algorithms, is one of the fastest-growing areas in computer science. Many manuals and "how-to"s on the use of different EC methods as well as a variety of free or commercial software libraries are widely available nowadays. However, when one of these methods is applied to a real-world task, there can be many pitfalls and booby traps lurking - certain aspects of the optimization problem that may lead to unsatisfactory results even if the algorithm appears to be correctly implemented and executed. These include the convergence issues, ruggedness, deceptiveness, and neutrality in the fitness landscape, epistasis, non-separability, noise leading to the need for robustness, as well as dimensionality and scalability issues, among others. In this article, we systematically discuss these related hindrances and present some possible remedies. The goal is to equip practitioners and researchers alike with a clear picture and understanding of what kind of problems can render EC applications unsuccessful and how to avoid them from the start.  相似文献   

15.
    
Current innovative distributed architectures, proposing on-line services, involve more and more computing resources. From a provider point of view, the platform management leads to challenging problematic relating to resource allocation, which involve different kind of quality of service parameters, the provider has to focus on to keep his platform reliable and efficient. MFHS is a modular generic framework, which can be adapted to any distributed computing environment. Structured in modules, MFHS allows to discover the existing computing resources in terms of computing performance, network throughput and disk I/O speeds (Resources Discovery module) and to predict how the experiment should behave (Pi value). As the setting up of real experiments is often complex, MFHS allows: to make theoretical experimentation (based on models), to use any kind of distributed emulators, or to deploy experiments on real-experimental platforms. In this article, these three environments are used to highlight the reliability of MFHS (measured Pi=90% against 94% for the predicted Pi). Deployment and scheduling studies have also been achieved using an experimental Cloud based on OpenStack while Emulab test-bed has been used as emulator. During experiments, four QoS parameters are taken into account (Resources Monitoring module): energy consumption, cost, resource utilization, and makespan. These studies also includes a new heuristic called MMin, based on Max-Min and Min-Min algorithms. Experimentation section, proposes a detailed comparative analysis of these algorithms in terms of QoS results, while the abilities of the proposed heuristic MMin regarding the makespan metric is shown.  相似文献   

16.
以多异构无人机执行SEAD任务为背景,开展协同任务分配问题建模、算法设计和仿真分析.采用图论的方法完成问题的建模,将无人机本体等效为Dubins Car模型,并对其在相应目标处执行侦查、打击、评估任务时的进入角度进行约束,通过Dubins路径完成对无人机飞行路径的等效,采用分布式遗传算法完成对问题的快速求解.研究结果表明,带有路径末端角度约束的任务分配问题具有较好的实用意义,分布式遗传算法可有效处理实时任务分配问题,完成任务空间的快速决策.  相似文献   

17.
一种批优化调度策略的实时异构系统的集成动态调度算法   总被引:1,自引:0,他引:1  
针对实时异构多任务调度的特点,提出了软、硬实时任务形式化描述非精确计算的统一任务模型,在此基础上,提出了一种基于批优化调度策略的实时异构系统的集成动态调度算法.该算法以启发式搜索为基础,引入软实时任务服务质量降级策略,在每次扩充当前局部调度时,按制定的规则选取一批任务,计算其在各处理器上运行的目标函数,采用指派问题解法对任务优化分配.模拟实验表明,该算法与同类算法相比,提高了调度成功率.  相似文献   

18.
A fundamental issue affecting the performance of a parallel application running on a heterogeneous computing system is the assignment of tasks to the processors in the system. The task assignment problem for more than three processors is known to be NP-hard, and therefore satisfactory suboptimal solutions obtainable in an acceptable amount of time are generally sought. This paper proposes a simple and effective iterative greedy algorithm to deal with the problem with goal of minimizing the total sum of execution and communication costs. The main idea in this algorithm is to improve the quality of the assignment in an iterative manner using results from previous iterations. The algorithm first uses a constructive heuristic to find an initial assignment and iteratively improves it in a greedy way. Through simulations over a wide range of parameters, we have demonstrated the effectiveness of our algorithm by comparing it with recent competing task assignment algorithms in the literature.  相似文献   

19.
针对日益受欢迎的异地敏捷软件开发,提出了一种基于多任务优先算法的任务分派方法,并运用数学计算方法进行任务分派.通过多模型调查研究,较全面综合考虑异地敏捷开发中多方面影响因素,给出一种具体分派方法,以提高任务分派的有效性.经验证,该任务分派方法适合异地敏捷软件开发.  相似文献   

20.
曹萱  周威  水勇波  任毅 《测控技术》2025,44(5):58-69
在无人机任务分配系统中,采用基于共识的捆绑算法(Consensus-Based Bundle Algorithm,CBBA)可以高效地基于任务参数、无人机(Unmanned Aerial Vehicle,UAV)参数进行任务调度。但当某一任务需要多UAV协同完成时,CBBA无法对任务进行分解,难以作出规划。此外,当任务代价大于任务收益时,也会导致基于CBBA的任务分配失败。针对以上问题,提出一种基于合同网算法、模糊综合评价法和提升竞拍任务价值的改进CBBA,并在MATLAB/Simulink环境下进行仿真验证。仿真结果表明,相较于传统CBBA,改进CBBA能够有效解决以上问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号