首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
祝弘滨  李辉  栗卓新 《焊接学报》2014,35(11):43-46
采用团聚烧结方法制备TiB2-Ni复合粉末喂料,并采用大气等离子喷涂和高速火焰喷涂两种喷涂方法制备了TiB2-Ni涂层,比较分析了两种涂层的显微组织、物相组成、孔隙率、硬度和断裂韧性.结果表明,与等离子喷涂相比,高速火焰喷涂制备的TiB2-Ni涂层具有更高的致密度,TiB2含量,硬度和断裂韧性.两种涂层中TiB2都没有发生明显的脱硼,氧化,但等离子喷涂过程中TiB2向金属相中发生了溶解生成了大量脆性Ni20Ti3B6相,并降低了涂层中TiB2的含量,这是涂层硬度和断裂韧性相对较低的主要原因.  相似文献   

2.
Boride materials have drawn great attention in surface engineering field, owing to their high hardness and good wear resistance. In our previous work, a plasma-sprayed TiB2-based cermet coating was deposited, but the coating toughness was significantly influenced by the formation of a brittle ternary phase (Ni20Ti3B6) derived from the reaction between TiB2 and metal binder. In order to suppress such a reaction occurred in the high-temperature spraying process, the high-velocity oxygen-fuel spraying technique was applied to prepare the TiB2-NiCr coating. Emphasis was paid on the microstructure, the mechanical properties, and the sliding wearing performance of the coating. The result showed that the HVOF-sprayed coating mainly consisted of hard ceramic particles including TiB2, CrB, and the binder phase. No evidence of Ni20Ti3B6 phase was found in the coating. The mechanical properties of HVOF-sprayed TiB2-NiCr coating were comparable to the conventional Cr3C2-NiCr coating. The frictional coefficient of the TiB2-NiCr coating was lower than the Cr3C2-NiCr coating when sliding against a bearing steel ball.  相似文献   

3.
A nanostructured Ni60-TiB2 composite coating (Ni60 is a brand of Ni-based self-fluxing alloy with a hardness of HRC60) was sprayed on steel substrate by high velocity oxy-fuel (HVOF) process using high energy ball milled powders. Its sliding wear resistance at room-temperature was evaluated by ball-on-disc testing. For comparison, conventional Ni60-TiB2 composite coating was prepared by HVOF using mechanically mixed Ni60 and TiB2 powders and tested under the same conditions. The results show that the nanostructured composite coating has excellent mechanical properties and sliding wear resistance due to the microstructural homogenization and the well preserved nanostructure characteristic of the ball milled powders. Adhesive and abrasive wears are found to be responsible for the wear down mechanisms of the nanostructured Ni60-TiB2 composite coating.  相似文献   

4.
Melting and wetting behavior of Ni83B17 and Ni50B50 alloys on TiB2 ceramic are investigated upon heating to 1105 and 1050 °C, respectively, using the sessile drop technique. Both alloys show a very good wetting on the TiB2 substrates immediately after incipient melting. Liquid Ni50B50 alloy is revealed not to dissolve TiB2, but penetrates along the grain boundaries into the ceramic. Upon heating and melting of the Ni83B17 alloy on TiB2, a small amount of ceramic is dissolved and the ternary Ni21Ti2B6 phase is formed. Whereas multiple microcracks are observed at the Ni83B17/TiB2 interface, the Ni50B50/TiB2 couple is well bonded and free of interfacial microcracks.  相似文献   

5.
FASHS技术制备TiB2+Ni/Ni3Al/405不锈钢梯度材料   总被引:1,自引:0,他引:1       下载免费PDF全文
采用电场激活自蔓延高温合成(FASHS)技术制备了TiB2 Ni/Ni3Al/405不锈钢梯度材料.试验中首先将镍粉和铝粉球磨处理以促进燃烧反应发生,然后采用FASHS技术利用自蔓延燃烧反应热连接制备了TiB2 Ni/Ni3Al/405不锈钢梯度材料.用SEM和XRD分析了梯度材料各层的界面微观组织及相组成,用洛氏硬度计、显微硬度计及磨料磨损试验机分析了材料的力学性能、硬度及表面抗磨性.结果表明,金属陶瓷复合层、Ni3Al层和405不锈钢金属片间形成了可靠的冶金结合,金属陶瓷复合材料表面硬度为90HRA,材料的化学成分和显微硬度呈梯度分布,耐磨性优于20Cr渗碳钢.  相似文献   

6.
Wear resistant TiC reinforced Ti–Ni–Si intermetallic composite coating with a microstructure consisting of TiC uniformly distributed in Ti2Ni3Si–NiTi–Ti2Ni multi-phase intermetallic matrix was fabricated on a substrate of TA15 titanium alloy by the laser cladding process using TiC/Ti–Ni–Si alloy powders as the precursor materials. Microstructure of the coating was characterized by optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray energy dispersive spectrometer (EDS). Dry sliding wear resistance of the laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating was evaluated at room temperature. Results indicated that the TiC/(Ti2Ni3Si–NiTi–Ti2Ni) intermetallic composite coating exhibited excellent abrasive and adhesive wear resistance.  相似文献   

7.
Two metallic powders namely Ni-20Cr and Ni3Al were coated on AISI 309 SS steel by shrouded plasma spray process. The wear behavior of the bare, Ni-20Cr and Ni3Al-coated AISI 309 SS steel was investigated according to ASTM Standard G99-03 on a Pin-on-Disc Wear Test Rig. The wear tests were carried out at normal loads of 30 and 50 N with a sliding velocity of 1 m/s. Cumulative wear rate and coefficient of friction (μ) were calculated for all the cases. The worn-out surfaces were then examined by scanning electron microscopy analysis. Both the as-sprayed coatings exhibited typical splat morphology. The XRD analysis indicated the formation of Ni phase for the Ni-20Cr coating and Ni3Al phase for the Ni3Al coating. It has been concluded that the plasma-sprayed Ni-20Cr and Ni3Al coatings can be useful to reduce the wear rate of AISI 309 SS steel. The coatings were found to be adherent to the substrate steel during the wear tests. The plasma-sprayed Ni3Al coating has been recommended as a better choice to reduce the wear of AISI 309 SS steel, in comparison with the Ni-20Cr coating.  相似文献   

8.
WC-(W,Cr)2C-Ni coatings were prepared by atmospheric plasma spraying (APS) with different spraying powers. The effect of spraying power on microstructure, phase composition, hardness, fracture toughness, and oscillating dry friction and wear behaviors of the coatings were studied. Simultaneously, the microstructure and properties of the as-sprayed coatings were compared with those of WC-17Co coating prepared under the optimal spraying power. It was found that spraying power had significant effect on the molten degree of feedstock powder and phase composition as well as microstructure and properties of WC-(W,Cr)2C-Ni coatings. WC-(W,Cr)2C-Ni coating deposited at a moderate spraying power of 22.5?kW had the highest fracture toughness and the best wear resistance. WC-17Co coating obtained under the moderate spraying power had poor fracture toughness and wear resistance. Moreover, the four kinds of coatings were all dominated by subsurface cracking and removal of materials when sliding against Si3N4 ball under unlubricated conditions.  相似文献   

9.
马宁  赵迪  张柯柯  杨跃  尹丹青 《焊接学报》2018,39(10):124-128
利用氩弧作为热源,以G302铁基合金粉、FeTi70粉和B4C粉作为原料粉末,在Q235表面原位生成TiC-TiB2增强的铁基复合涂层. 采用一系列的分析测试方法对涂层进行了表征,结果表明,氩弧熔覆过程冶金反应充分,熔覆层中生成了TiC,TiB2和M7C3等硬质增强相;熔覆层组织呈现出由母材界面到熔覆层表面硬质相逐渐增多的梯度分布特征. 增加FeTi70和B4C粉末比例提高了熔覆层硬度,质量比为G302:FeTi70:B4C=6:3:1时,试样最大硬度达到976 HV0.1,是母材硬度的5倍左右. 在与GCr15钢对磨时,熔覆试样磨损量仅为Q235钢的1/30左右,熔覆层磨损表面基本无塑性变形痕迹,涂层中坚硬的TiC,TiB2陶瓷相起到阻磨作用.  相似文献   

10.
为提高TC4钛合金的耐磨性,利用激光熔覆技术(laser cladding,LC)在TC4钛合金表面制备Ni60+50%WC(体积分数)和deloro22(d22)粉末打底+(Ni60+50%WC)2种耐磨复合涂层。采用扫描电子显微镜(SEM)、能谱仪(EDS)以及X射线衍射仪(XRD)来表征涂层的微观结构和物相组成;使用HV-1000显微维氏硬度计、HRS-2M型高速往复摩擦磨损试验机和WDW-100D电子万能试验机来分析涂层的性能。结果表明:2种涂层均由W2C、TiC、Ni17W3、Ni3Ti和TixW1-x相组成,2种涂层不仅与基体呈现出优异的冶金结合,而且组织均匀致密,没有裂纹瑕疵;由于涂层中存在着原位合成的硬质相和细晶强化共同作用使得涂层硬度显著提高,约为TC4基体的2.82倍;2种涂层的摩擦系数(COF)和磨损量都远低于TC4钛合金基体;Ni60+50%WC复合涂层和d22粉末打底+(Ni60+50%WC)复合涂层的抗剪切结合强度分别为188....  相似文献   

11.
The effect of a combined treatment including severe plastic deformation under the conditions of dry sliding friction and heating in air to temperatures of 300?C480°C (holding for 1 h) on the structure and wear resistance of the surface layer of the Ti49.4Ni50.6 alloy has been investigated. It has been shown that this frictional treatment results in an amorphous-nanocrystalline structure in the surface layer (of thickness to 10 ??m) of the Ti49.4Ni50.6 alloy. Heating to 300°C brings about the complete crystallization of the amorphous phase; as a result, the structure of the deformed surface layer of the alloy becomes single-phase, consisting of nanocrystals of the B2 phase. At 400°C, in this deformed surface layer there arises a nanocrystalline oxide (TiO2) phase whose amount reaches tens of volume percent. The sizes of crystals of the B2 phase and oxide TiO2 are in the range of 1?C50 nm. The arising two-phase (B2 + TiO2) nanocrystalline structure is located just below the oxide TiO2 film, which is less than 1 ??m thick. With an increase in the heating temperature to 480°C, the deformed surface layer under consideration retains the nanocrystalline two-phase (B2 + TiO2) structure, but an increase in the amount of the oxide phase and a decrease in the microhardness of this structure are observed. In some cases (heating at temperatures of 430 and 450°C), the presence of the two-phase (B2 + TiO2) nanocrystalline surface layer leads to a noticeable (to ??25%) enhancement in the adhesive wear resistance of the Ti49.4Ni50.6 alloy upon sliding friction in pair with steel 40Kh13.  相似文献   

12.
A relatively new generation of cermet materials, based on TiB2-Ni, has been investigated. These borides currently are being examined for industrial applications with the aim of exploiting their excellent wear resistance. Optimization of the liquid-phase sintering process for a TilB2-Ni composition was studied. The mechanical properties of cermet materials prepared using vacuum and pressure sintering techniques were determined. Criteria for optimal sintering conditions were established according to hardness, strength, and fracture toughness properties.  相似文献   

13.
The detonation spraying is one of the most promising thermal spray variants for depositing wear and corrosion resistant coatings. The ceramic (Al2O3), metallic (Ni-20 wt%Cr) , and cermets (WC-12 wt%Co) powders that are commercially available were separated into coarser and finer size ranges with relatively narrow size distribution by employing centrifugal air classifier. The coatings were deposited using detonation spray technique. The effect of particle size and its distribution on the coating properties were examined. The surface roughness and porosity increased with increasing powder particle size for all the coatings consistently. The feedstock size was also found to influence the phase composition of Al2O3 and WC-Co coatings; however does not influence the phase composition of Ni-Cr coatings. The associated phase change and %porosity of the coatings imparted considerable variation in the coating hardness, fracture toughness, and wear properties. The fine and narrow size range WC-Co coating exhibited superior wear resistance. The coarse and narrow size distribution Al2O3 coating exhibited better performance under abrasion and sliding wear modes however under erosion wear mode the as-received Al2O3 coating exhibited better performance. In the case of metallic (Ni-Cr) coatings, the coatings deposited using coarser powder exhibited marginally lower-wear rate under abrasion and sliding wear modes. However, under erosion wear mode, the coating deposited using finer particle size exhibited considerably lower-wear rate.  相似文献   

14.
A pseudo-alloy PS45/CuAl8 composite coating was sprayed on steel substrate by high-velocity activated arc spraying (HVAA) process. Its sliding wear behavior at room temperature was evaluated by M-2000 wear tester. For comparison, a single CuAl8 coating was also prepared and tested under the same conditions. It is found that the pseudo-alloy composite coating consists of α-Cu and γ-Ni metallic matrix phases together with homogenously distributed minor Al 2 O 3 , Cr 2 O 3 oxide phases. Moreover, pseudo-alloy coating possesses much better sliding wear resistance than CuAl8 coating due to the enhanced hardness and microstructural homogenization. Fatigue wear and abrasive wear are responsible for the wear-down mechanism of the pseudo-alloy coating.  相似文献   

15.
TiB2–TiC composite ceramic cutting tool material was prepared by sintering during hot-pressing in vacuum. The effects of nano-scale Ni and Mo additives and sintering heating rate on mechanical properties and grain characteristics were investigated. TiB2 and TiC grains exhibited prismatic and equiaxed shapes respectively. The diameter and aspect ratio of prismatic TiB2 grains were influenced by nano-scale Ni/Mo additives. A higher heating rate could cause a higher aspect ratio of prismatic TiB2 grains. The good mechanical properties of TN1((TiB2–TiC)/Ni composite ceramic sintered at a heating rate of 50 °C/min) were ascribed to a relatively fine and homogenous microstructure. And a brittle B4MoTi solid solution phase and wider distribution of grain size induced the lower flexural strength of TNM2((TiB2–TiC)/(Ni,Mo) composite ceramic sintered at heating rate of 100 °C/min), but the higher aspect ratio of TiB2 grains could prevent cracks from propagating and ameliorated the fracture toughness. The optimum resultant mechanical properties were obtained by (TiB2–TiC)/Ni composite ceramic sintered at a heating rate of 50 °C/min.  相似文献   

16.
王振廷  丁元柱  梁刚 《焊接学报》2011,32(12):105-108
以BN和Ni60A合金粉末为熔覆材料,采用氩弧熔覆技术在TCA合金表面原位合成TiB2-TiN增强颗粒耐磨涂层.利用x射线衍射仪、扫描电子显微镜和摩擦磨损试验机对熔覆层的组织和性能进行分析测试.结果表明,复合涂层的显微组织沿层深方向分为熔覆区、结合区和热影响区;熔覆层与基体呈良好冶金结合,TiB2-TiN颗粒弥散分布,...  相似文献   

17.
The use of nanoscale WC grain or finer feedstock particles is a possible method of improving the performance of WC-Co-Cr coatings. Finer powders are being pursued for the development of coating internal surfaces, as less thermal energy is required to melt the finer powder compared to coarse powders, permitting spraying at smaller standoff distances. Three WC-10Co-4Cr coatings, with two different powder particle sizes and two different carbide grain sizes, were sprayed using a high velocity oxy-air fuel (HVOAF) thermal spray system developed by Castolin Eutectic-Monitor Coatings Ltd., UK. Powder and coating microstructures were characterized using XRD and SEM. Fracture toughness and dry sliding wear performance at three loads were investigated using a ball-on-disk tribometer with a WC-Co counterbody. It was found that the finer powder produced the coating with the highest microhardness, but its fracture toughness was reduced due to increased decarburization compared to the other powders. The sprayed nanostructured powder had the lowest microhardness and fracture toughness of all materials tested. Unlubricated sliding wear testing at the lowest load showed the nanostructured coating performed best; however, at the highest load this coating showed the highest specific wear rates with the other two powders performing to a similar, better standard.  相似文献   

18.
选择了三种球磨时间制备的Ni/Ti机械合金化粉末,通过冷喷涂制备了不同结构的Ni/Ti涂层.涂层组织结构采用扫描电镜(SEM)和X射线衍射(XRD)进行了表征分析.试验发现,随着粉末球磨时间的增加,热处理后的冷喷涂合金转变为金属间化合物的温度下降,涂层的组成相由Ni3Ti,B2-NiTi和Ti2Ni逐渐变成Ni3Ti和Ti2Ni;随着热处理温度的增加,涂层组织中不同成分的金属间化合物的相对量会发生一定改变.结果表明,热处理过程中形成的B2-NiTi金属间化合物在冷却时表现出较高的稳定性.  相似文献   

19.
In this study, mechanically alloyed Al-12Si/TiB2/h-BN composite powder was deposited onto aluminum substrates by atmospheric plasma spraying. Wear performance of the coating was investigated with respect to the structural evolution of the composite powder coating. Non-lubricated ball-on-disk tests were used to examine the wear resistance of the coatings. The worn surfaces were examined using scanning electron microscopy and energy dispersive spectroscopy to elucidate the wear mechanisms operating at the sliding interface. It has been observed that TiB2 and in situ formed AlN and Al2O3 phases in combination with h-BN solid lubricant strongly affect the wear performance of the coating.  相似文献   

20.
利用激光熔覆技术在纯钛表面制备了NiCr涂层。用X射线衍射仪(XRD)和扫描电镜(SEM)分析了涂层的组成和组织结构。在UMT-2MT摩擦磨损试验机上对NiCr涂层在不同载荷和不同滑动速度下的摩擦磨损性能进行了测试。结果表明:NiCr涂层的主要组成物相为NiTi、Ni3Ti、Ni4Ti3、Cr2Ni3和Cr2Ti,涂层与基材冶金结合,涂层晶体结构主要为树枝状晶,涂层的平均显微硬度约为780HV0.2,涂层的摩擦因数随载荷和滑动速度的增加而减小;磨损率随载荷的增加而增加,随滑动速度的增加而减小。涂层的磨损率在10-6 mm3/Nm数量级,具有优异的耐磨性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号