首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We explore the combination of a latex microsphere with a low NA lens to form a high performance optical system, and enable the detection of single molecules by fluorescence correlation spectroscopy (FCS). Viable FCS experiments at concentrations 1-1000 nM with different objectives costing less than $40 are demonstrated. This offers a simple and low-cost alternative to the conventional complex microscope objectives.  相似文献   

2.
Berland K  Shen G 《Applied optics》2003,42(27):5566-5576
Fluorescence correlation spectroscopy (FCS) has become a powerful and sensitive research tool for the study of molecular dynamics at the single-molecule level. Because photophysical dynamics often dramatically influence FCS measurements, the role of various photophysical processes in FCS measurements must be understood to accurately interpret FCS data. We describe the role of excitation saturation in two-photon fluorescence correlation measurements. We introduce a physical model that characterizes the effects of excitation saturation on the size and shape of the two-photon fluorescence observation volume and derive a new analytical expression for fluorescence correlation functions that includes the influence of saturation. With this model, we can accurately describe both the temporal decay and the amplitude of measured fluorescence correlation functions over a wide range of illumination powers.  相似文献   

3.
Calibration of probe volume in fluorescence correlation spectroscopy   总被引:1,自引:0,他引:1  
In fluorescence correlation spectroscopy (FCS), an accurate evaluation of the probe volume is the basis of correct interpretation of experimental data and solution of an appropriate diffusion model. Poor fitting convergence has been a problem in the determination of the dimensional parameters, the beam radius, omega, and the distance along the optical axis of the probe volume, l. In this work, the instability of fitting during the calibration process is investigated by examining the chi(2) surfaces. We demonstrate that the minimum of chi(2) in the omega dimension is well defined for both converging and diverging data. The difficulty of fitting comes from the l dimension. The uncertainty in l could be significantly larger than that in omega, as determined by F-statistics. A modified calibration process is recommended based on examining two data treatment methods, combining several short data sets into a single long run and averaging the correlation functions of several short data sets. It is found that by using the mean of several converging correlation functions from short data sets instead of a long time correlation, more stable and consistent dimensional parameters are extracted to define the probe volume.  相似文献   

4.
Zhao M  Jin L  Chen B  Ding Y  Ma H  Chen D 《Applied optics》2003,42(19):4031-4036
Afterpulsing arises from feedback in a photon detector. This means that each real signal pulse can be followed by an afterpulse at a later time. This effect is particularly troubling in photon correlation experiments. Few treatments of this effect have appeared in the literature, and few software programs to solve the problem have been written. We demonstrate the afterpulsing effect in fluorescence correlation spectroscopy by using different avalanche photodiodes. We prove theoretically that under simple and reasonable conditions afterpulsing in autocorrelation can be eliminated to the leading order; we have found it easy to program software for the correction. We compare our results with those from cross correlation. We also discuss some experimental parameters that may affect the afterpulsing.  相似文献   

5.
Capillary flow experiments are described with fluorescent molecules, bacteria, and microspheres using fluorescence correlation spectroscopy as an analytical tool. The flow velocity in the microcapillary is determined by fitting autocorrelation traces with a model containing parameters related to diffusion and flow. The flow profile of pressure-driven flow inside a microcapillary is determined by using the fluorescence fluctuations of a small dye molecule. It was found that bacteria and microspheres are retarded in their flow by optical forces produced by the laser beam.  相似文献   

6.
In fluorescence correlation spectroscopy (FCS) analysis it is generally assumed that molecular species diffuse freely in volumes much larger than the three-dimensional FCS observation volume. However, this standard assumption is not valid in many measurement conditions, particularly in tubular structures with diameters in the micrometer range, such as those found in living cells (organelles, dendrites) and microfluidic devices (capillaries, reaction chambers). As a result the measured autocorrelation functions (ACFs) deviate from those predicted for free diffusion, and this can shift the measured diffusion coefficient by as much as ~50% when the tube diameter is comparable with the axial extension of the FCS observation volume. We show that the range of validity of the FCS measurements can be drastically improved if the tubular structures are located in the close vicinity of a mirror on which FCS is performed. In this case a new fluctuation time in the ACF, arising from the diffusion of fluorescent probes in optical fringes, permits measurement of the real diffusion coefficient within the tubular structure without assumptions about either the confined geometry or the FCS observation volume geometry. We show that such a measurement can be done when the tubular structure contains at least one pair of dark and bright fringes resulting from interference between the incoming and the reflected excitation beams on the mirror surface. Measurement of the diffusion coefficient of the enhanced green fluorescent protein (EGFP) and IscS-EGFP in the cytoplasm of living Escherichia coli illustrates the capabilities of the technique.  相似文献   

7.
8.
Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve fluorescence of two tryptophan (Trp) residues in horse heart myoglobin. Fluorescence quenching is employed as a perturbation mode for causing intensity changes in the fluorescence (quenching perturbation). Two kinds of quenchers, iodide ion and acrylamide, are used for inducing fluorescence intensity change. This technique works because the Trp residue located at the 7th position (W7) is known to be easily accessible to the quencher, whereas that located at the 14th position (W14) is not. By this technique, the fluorescence spectra of the two Trp residues were clearly resolved. From asynchronous maps, it was also shown that the quenching of W7 fluorescence is brought about prior to the quenching of W14 fluorescence. This result is consistent with the structure of horse heart myoglobin that was proposed earlier. Furthermore, it was elucidated that the present 2D analysis is not interfered with by Raman bands of the solvents, which sometimes brings difficulty into conventional fluorescence analysis.  相似文献   

9.
In this paper we present and demonstrate a technique for mapping fluid flow rates in microfluidic systems with sub-micrometer resolution using confocal microscopy in conjunction with fluorescence correlation spectroscopy (FCS). Flow velocities ranging from approximately 50 microm/s to approximately 10 cm/s can be recorded using fluorescent polymer nanospheres as fluid motion tracers. Velocity profiles and images of the flow in poly(dimethylsiloxane)-glass microchannels are presented and analyzed. Using the method, velocity images along the horizontal (top view) and vertical planes within a microdevice can be obtained. This is, to our knowledge, the first report of FCS for producing velocity maps. The high-resolution velocity maps can be used to characterize and optimize microdevice performance and to validate simulation efforts.  相似文献   

10.
Fluorescence correlation spectroscopy (FCS) is a powerful technique for measuring low concentrations of fluorescent molecules and their diffusion coefficients in an open detection volume. However, in several practical cases, when FCS measurements are carried out in small compartments like microchannels, neglecting boundary effects could lead to erroneous results. Here, a close form solution is proposed to explicitly account for the presence of walls located at a distance comparable with the characteristic detection volume lengths. We derive a one-dimensional diffusion constrained model and then generalize the solution to the two- and the three-dimensional constrained cases. We further indicate within which limits the standard autocorrelation function (ACF) model gives reliable results in microconfinement. Our model relies just on the assumption of elastic hits at the system walls and succeeds in describing the ACF of fluorescent probes confined along one direction. Through the analysis of FCS experimental data, we are able to predict the correct shape of the ACF in channels of micrometric and submicrometric width and measure the extent of lateral confinement. In addition, it permits the investigation of microstructured material features such as cages and cavities having dimensions on the micrometric range. On the basis of the proposed model, we also show in which conditions confinement could generate an apparent time dependent probe mobility, thus allowing a proper interpretation of the transport process taking place in submicrometric compartments.  相似文献   

11.
超短基线定位系统具有基阵尺寸小、易于安装等优点,被广泛应用于海洋科学领域。但超短基线作用距离短,远距离定位精度不高。为了改善超短基线的定位精度,在四元阵被动定位结构基础上,采用相关峰内插时延估计算法进行超短基线定位。仿真结果表明该算法能够较好地估计时延差值,有效改进定位精度。  相似文献   

12.
When properly implemented, fluorescence correlation spectroscopy (FCS) reveals numerous static and dynamic properties of molecules in solution. However, complications arise whenever the measurement scenario is complex. Specific limitations occur when the detection region does not match the ideal Gaussian geometry ubiquitously assumed by FCS theory, or when properties of multiple fluorescent species are assessed simultaneously. A simple binary solution of diffusers, where both mole fraction and diffusion constants are sought, can face interpretive difficulty. In order to better understand the limits of FCS, this study systematically explores the relationship between detection-volume distortion, diffusion constants, species mole fraction, and fitting methodology in analyses that utilize a two-component autocorrelation model. FCS measurements from solution mixtures of dye-labeled protein and free dye are compared to simulations, which predict the performance of FCS under a variety of experimental circumstances. The results reveal a range of conditions necessary for performing accurate measurements and describe experimental scenarios that should be avoided. The findings also provide guidelines for obtaining meaningful measurements when grossly distorted detection volumes are utilized and generally assess the latent information contained in FCS datasets.  相似文献   

13.
Qing DK  Mengüç MP  Payne FA  Danao MG 《Applied optics》2003,42(16):2987-2994
Fluorescence correlation spectroscopy (FCS) is adapted for a new procedure to detect trace amounts of Escherichia coli in water. The present concept is based on convective diffusion rather than Brownian diffusion and employs confocal microscopy as in traditional FCS. With this system it is possible to detect concentrations as small as 1.5 x 10(5) E. coli per milliliter (2.5 x 10(-16) M). This concentration corresponds to an approximately 1.0-nM level of Rhodamine 6G dyes. A detailed analysis of the optical system is presented, and further improvements for the procedure are discussed.  相似文献   

14.
Roach CA  Neal SL 《Applied spectroscopy》2010,64(10):1145-1153
Fluorescence correlation spectroscopy (FCS) uses fluctuations in the fluorescence collected from a small illuminated volume to measure dynamic processes of fluorophores. In traditional FCS, spectral overlap produces cross-talk in dedicated detector channels, undermining the accuracy of measurements of molecular interactions. Here, the experimental realization of full-spectrum fluorescence correlation spectroscopy is described and coupled with multivariate data analysis to numerically correct detector cross-talk, isolating spectra and fluctuation traces of mixture components in spite of overlap. Application of this methodology is illustrated using the measurement of the diffusion constant of labeled polystyrene in hydroxypropyl cellulose in the presence of a persistent dye. Additionally, the results show that full-spectrum FCS with multivariate analysis can isolate and characterize signals from unanticipated sample components.  相似文献   

15.
Gosch M  Blom H  Holm J  Heino T  Rigler R 《Analytical chemistry》2000,72(14):3260-3265
In this paper we demonstrate high spatial resolution hydrodynamic flow profiling in silicon wafer based microchannels using single molecule fluorescence correlation spectroscopy (FCS). We have used confocal fluorescence microscopy to detect single tetramethylrhodamine (TMR-4-dUTP) biomolecules traversing a approximately 1 fL volume element defined by an argon laser beam focus. By elevating a (approximately 10(-10) M) reservoir of diluted analyte, a continuous hydrodynamic flow through the microstructure could be accomplished. The microchannel was then scanned with a diffraction-limited focus in approximately 1-microm steps in both the vertical and the horizontal directions to determine the flow profile across a 50 x 50 microm2 channel. The flow profile measured was parabolic in both dimensions, thereby showing a Poiseuille laminar flow profile. Future microstructures can hereby be nondestructively investigated with the use of high spatial resolution confocal correlation microscopy.  相似文献   

16.
In this report, a combined imaging and fluorescence correlation spectroscopy (FCS) method is described and its ability to characterize microsecond fluctuations in the fluorescence emission of a sample is demonstrated. A sample scanning laser confocal microscope is operated in the customary way while recording the time that each photon is detected with a time resolution of 50 ns using a low-cost counting board. The serial data stream of photon detection times allows access to fluorescence signal fluctuations that can be used to characterize dynamics using correlation methods. The same data stream is used to generate images of the sample. Using the technique, we demonstrate that it is possible to characterize the kinetics of transitions to and from nonemitting or "dark" states of the fluorescent dyes DiIC16 and ATTO 520. Results are similar to, but deviate slightly from, a model that has been frequently used for extracting singlet-triplet: conversion rates using conventional solution-based FCS. Like conventional FCS, the concentration, or in our case the areal density of coverage, of fluorescent species can also be obtained. Many single-molecule fluorescence experiments aim to extract kinetics from intensity trajectories; this method may be used as a rapid and convenient technique for characterization of surface-linked or thin-film samples prior to performing the more time and effort intensive single-molecule measurements. Besides the capacity to measure photophysical phenomena, the surface-sensitive FCS method could also be applied for measuring conformational changes or interaction kinetics for species immobilized on a surface. One possible scenario is measurements of the frequency and duration of association of ligand-receptor pairs where a fluorescently labeled component is freely diffusing and the other is surface immobilized. Given that microarrays of custom-designed, surface-immobilized peptides and nucleic acids are now readily available, the ability to sensitively measure association and dissociation rates of the surface-linked species with a freely diffusing species could be a useful extension to what has already become an extremely important tool for characterizing the interactions of biomolecules.  相似文献   

17.
The second order standard addition method and spectrofluorimetry were used for determination of ibuprofen enantiomers in human plasma and urine. The methodology was based on chiral recognition of ibuprofen by formation of an inclusion complex with a chiral auxiliary, β-cyclodextrin, in the presence of 1-butanol. The strategy combines the use of PARAFAC, for extraction of the pure analyte signal, with the standard addition method, for determinations in presence of a matrix effect. A specific PARAFAC model was built for each sample and the scores were related to (S)-ibuprofen concentration using a linear regression in the standard addition method. Feasible results were obtained for determinations in the molar fraction range from 50 to 80% of (S)-ibuprofen, providing absolute errors lowers than 4.0% for plasma and urine.  相似文献   

18.
19.
L Ruan  Z Xu  T Lan  J Wang  H Liu  C Li  C Dong  J Ren 《Analytical chemistry》2012,84(17):7350-7358
Apoptosis plays a crucial role in many biological processes and pathogenesis of various malignancies and diseases of the immune system. In this paper, we described a novel method for sensitive detection of drug-induced apoptosis by using fluorescence correlation spectroscopy (FCS). The principle of this method is based on the assay of DNA fragmentation in the process of the drug-induced apoptosis. FCS is a single molecule method, and it can be used for sensitive and selective assay of DNA fragmentation without separation. We first developed a highly sensitive method for characterization of DNA fragments using a home-built FCS system and SYBR Green I as fluorescent DNA-intercalating dye, and then established a model of drug-induced apoptosis using human pancreatic cancer cells and a drug lidamycin. Furthermore, FCS method established was used to directly detect the fragmentation of DNA extracted from apoptotic cells or in the apoptotic cell lysate. In FCS assay, the single-component model and the multiple-components model were used to fit raw FCS data. The characteristic diffusion time of DNA fragments was used as an important parameter to distinguish the apoptotic status of cells. The obtained data documented that the characteristic diffusion time of DNA fragments from apoptotic cells significantly decreased with an increase of lidamycin concentration, which implied that DNA fragmentation occurred in lidamycin-induced apoptosis. The FCS results are well in line with the data obtained from flow cytometer and gel electrophoresis. Compared to current methods, the method described here is sensitive and simple, and more importantly, our detection volume is less than 1 fL, and the sample requirement can easily be reduced to nL level using a droplets array technology. Therefore, our method probably becomes a high throughput detection platform for early detection of cell apoptosis and screening of apoptosis-based anticancer drugs.  相似文献   

20.
The diffusion properties of fluorescent colloidal CdSe and CdSe/ZnS nanocrystals (QDs) with different hydrophilic coatings were characterized in complex fluids such as actin solutions using fluorescence correlation spectroscopy (FCS). The hydrodynamic radii of the QDs were determined both in organic solvents and water. Attention was given to the potential artifacts arising from the fluorescence properties of the QDs. With increasing excitation intensities, the apparent particle concentration and diffusion times are overestimated if using a simple diffusion model. This can be explained by a numerical simulation. The diffusion behavior of QDs in actin networks of different concentrations was determined to demonstrate the potential use of nanocrystals as probes in soft biological matter. The decreasing diffusion coefficient of the nanocrystals with increasing actin concentration results in an intrinsic polymer viscosity of 0.12+/-0.02 ml mg(-1), in accordance with literature values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号