共查询到18条相似文献,搜索用时 62 毫秒
1.
低对比度结构广泛存在于各种数字图像之中,研究如何通过后期处理增强数字图像的对比度是很有意义的。灰度图像对比度的高低总是与图像灰度梯度幅值的大小相联系,受这种思想的启发,提出了一种基于图像多尺度边缘表示的,利用对信号小波变换模极大值的拉伸和Hermite插值多项式实现的图像增强快速算法。此算法可以实现对噪声的抑制和对图像中不同尺度特征的增强。数值实验结果表明,该算法增强效果明显,运算速度快,是一种实用性较强的图像对比度增强算法。 相似文献
2.
传统图像增强算法在增强对比度的同时,也很大地提升图像噪声,需要对图像进行降噪处理。小波增强方法兼顾图像信号的空域和频域特性,但没有充分考虑到视觉的非线性特性。针对现有图像增强技术的这一缺陷,在分析小波变换对噪声影响规律的基础上,结合小波多尺度的特性,提出了一种基于小波多尺度的图像增强新算法,利用不同尺度上的小波系数间的相关性和小波分析的时频局部化特性来有效区分噪声和图像信息,有效改善了图像增强过程中的噪声放大问题。 相似文献
3.
基于小波多尺度积的图像增强新算法 总被引:4,自引:0,他引:4
在分析小波变换对噪声影响规律的基础上,结合小波多尺度积的特性,提出了一种基于小波多尺度积的图像增强新算法,利用二进小波变换中各尺度上小波系数间的相关性,有效改善了图像增强过程中噪声放大问题. 相似文献
4.
5.
一种基于二维离散小波变换的医学图像增强算法 总被引:2,自引:0,他引:2
噪声是影响医学图像质量的最重要的因素之一。去除噪声,增强图像以提高图像质量是医学图像处理的重要课题。传统的图像增强方法在改善图像视觉效果的同时还存在噪声过增强问题,不适于医学图像增强。针对这种情况,文章提出了基于二维离散小波变换的医学图像增强算法。在多尺度分析基础上,该算法对小波分解得到的低频子带图像采用两步提升法进行对比度增强处理,而对小波分解得到的不同方向上的小波系数进行不同程度的去噪并增强。实验结果表明,该方法在提高医学图像对比度改善图像质量的同时有效地解决了传统算法中难以克服的噪声放大问题。处理后的图像更利于医生进行分析诊断和医学影像的后续处理。 相似文献
6.
大多数的遥感图像存在视觉对比度低、分辨率低的缺点.因而在对遥感图像分析之前,通常都需要通过遥感图像增强技术对图像进行增强处理。当前的图像增强方法有很多种,文中引入了一种新颖的图像增强方法,即多尺度Rednex(MSR)算法。这种增强技术尤其对能见度差、分辨率低的图像有很好的效果,因此适合于对遥感图像的增强处理。此外,还引入了几种常用的经典图像增强方法,如直方图均衡法等。为了证实所引入的MSR算法对遥感图像的增强效果优于其他的增强方法,在实验中,将经典的图像增强方法和MSR算法分别应用于增强一幅典型的遥感图像并对比增强后的增强效果。实验结果表明MSR算法在对遥感图像的增强中可以取得满意的效果并且优于其他的图像增强方法。 相似文献
7.
提出一种新的指纹图像增强算法,该算法以小波变换为基础,利用小波的多尺度分析的能力,根据尺度不同进行非线性增强,解决了因噪声过强而造成差的指纹图像质量,同时保证了图像的整体增强效果。 相似文献
8.
提出一种基于小波融合的射线图像增强算法,利用射线成像的特点,对射线成像系统采集信号作分段灰度变换,将变换得到的多幅图像利用小波变换进行图像融合,以增强射线图像的显示效果。融合中采用低频图像的小波系数均值作为融合后的低频系数,高频图像根据梯度和一致性检测确定融合规则,调整高频小波系数大小,很好地将来自不同图像的特征与细节融合在一起,并对融合图像质量进行了对比评价。实验结果表明,这种方法能够在保留图像微小细节方面获得满意的结果,且优于传统的射线图像增强方法。 相似文献
9.
针对红外图像对比度差、信噪比低的特点,本文将小波分析与数学形态学相结合,提出了一种基于多尺度形态小波变换的红外图像边缘增强算法.该算法首先利用多尺度形态小波变换对图像进行分解,提取图像的多尺度边缘特征,然后通过非线性增强算子来改变边缘特征的强度,最后利用多尺度形态小波反变换重构图像,以实现图像边缘的对比度增强和背景抑制.实验结果表明,该算法有效地保持和增强了边缘信息,得到较好的增强效果. 相似文献
10.
小波分析是目前国际上最新的时间频率分析工具,是信号去噪的强有力处理工具.小波变换可以将交织在一起的混合信号分解成不同频率的块信号.多小波所拥有的对称性、正交性、有限支撑等重要特性弥补了单小波的不足.提出了一种新的图像增强方法,该方法以多小波变换为基础,采用多尺度非线性增强技术进行图像增强.实验证明,增强效果良好. 相似文献
11.
12.
13.
14.
为了解决方向对纹理图像细节增强的限制问题,提出一种融合小波变换与改进脉冲耦合神经网络(PCNN)的图像增强算法。该算法首先对图像进行二维离散小波变换,提取图像的高频分量图。然后将图像像素的局部梯度值作为链接强度系数,在动态阈值函数中加入侧抑制信号来改进脉冲耦合神经网络;并用改进的脉冲耦合神经网络对高频分量图进行增强。最后使用中值滤波对小波重构后的图像进行非线性平滑,实现纹理图像细节的增强。实验结果表明,该算法能够有效地减少图像细节增强时方向的限制。增强后,纹理图像的细节更加丰富,整体对比度也有一定的提高。 相似文献
15.
16.
17.
针对低照度彩色图像整体亮度较低,增强图像中颜色易失真,部分图像细节淹没在较低灰度值像素中等问题,提出一种改进的低照度图像增强算法。首先,把待处理图像转换到色调、饱和度、亮度(HSI)颜色空间,对亮度分量进行非线性全局亮度校正;然后,提出多尺度梯度域引导滤波的亮度增强模型,利用该模型对校正后的亮度分量进行增强,接着对增强后的亮度分量进一步实施避免颜色失真的亮度校正;最后,将图像再转换回红绿蓝(RGB)颜色空间。实验结果表明,增强后的图像亮度平均提高90.0%以上,清晰度平均提高123.8%以上,这主要得益于多尺度梯度域引导滤波具有更好的亮度平滑和增强能力;同时由于减小了颜色失真,使增强图像的细节表现能力平均提高18.2%以上;由于采用了多尺度梯度域引导滤波的亮度增强模型与直方图自适应的亮度校正算法,使提出的低照度图像增强算法适宜应用于夜间等弱光源条件下的彩色图像增强。 相似文献
18.
由于单尺度Retinex算法在处理过程中会产生光照强度问题导致图像细节表达不细致,提出一种改进的基于单尺度Retinex(SSR)算法的
真彩图像增强算法。首先,使用加权最小二乘法对原始彩色图像进行细节增强,然后对原始图像进行优化。对处理后的图像层和细节图像层构造增益系数,并进行重构输出一幅新的合并图像。实验结果表明,所提算法能够有效减少图像中的噪声,并使图像细节和对比度更加突出,亮度增强。相比于其它传统的算法,改进型Retinex算法处理后的图像客观评价指标有大幅度提升,图像增强能力有大幅改善。 相似文献