首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文叙述了三毫米微波辐射计接收机前端的级联宽带开关和放大器的设计过程与实验结果。该级联器件的噪声系数为:NF≤3dB;增益G为72dB;带宽范围为100 ̄1000MHz,并介绍了该级联器件的应用情况。  相似文献   

2.
基于CMOS的RF IC的发展现状   总被引:5,自引:0,他引:5  
目前,射频电路存在广阔的市场,成为无线通信领域内研究的热点之一。文章主要介绍了基于CMOS工艺的射频电路的研完现状。  相似文献   

3.
结合一个2.4 GHz CMOS低噪声放大器(LNA)电路,介绍如何利用Cadence软件系列中的IC 5.1.41完成CMOS低噪声放大器设计.首先给出CMOS低噪声放大器设计的电路参数计算方法,然后结合计算结果,利用Cadence软件进行电路的原理图仿真,并完成了电路版图设计以及后仿真.仿真结果表明,电路的输入/输出均得到较好的匹配.由于寄生参数,使得电路的噪声性能有约3 dB的降低.对利用Cadence软件完成CMOS射频集成电路设计,特别是低噪声放大器设计有较好的参考价值.  相似文献   

4.
本文叙述了三毫米微波辐射计接收机前端的级联宽带开关和放大器的设计过程与实验结果。该级联器件的噪声系数为:NF≤3dB;增益G为72dB;带宽范围为100-1000MHz。并介绍了该级联器件的应用情况。  相似文献   

5.
景一欧  李勇  赖宗声  孙玲  景为平   《电子器件》2007,30(4):1144-1147
采用0.18 μm CMOS工艺,实现了双频段低噪声放大器设计.通过射频选择开关,电路可以分别工作在无线局域网标准802.11g规定的2.4 GHz和802.11a规定的5.2 GHz频段.该低噪声放大器为共源共栅结构,设计中采用了噪声阻抗和输入阻抗同时匹配的噪声优化技术.电路仿真结果表明:在2.4 GHz频段电路线性增益为15.4 dB,噪声系数为2.3 dB,1 dB压缩点为-12.5 dBm,IIP3为-4.7 dBm;5.2 GHz频段线性增益为12.5 dB,噪声系数为2.9 dB,1 dB压缩点为-11.3 dBm,IIP3为-5.5 dBm.  相似文献   

6.
摘要:本文采用零中频结构针对800~2400MHz工作频段设计了一种通用射频前端,该射频前端在一款高性能解调器的基础上,加入宽带低噪声放大器、程控射频AGC电路、电调谐预选滤波器等电路,从而实现灵敏度优于-100dBm/5MHz,动态范围大于100dB的设计指标要求。  相似文献   

7.
本文对低功耗射频CMOS低噪声放大器的输入匹配网络进行了研究。采用台积电TSMC0.18μmCMOS工艺模型,通过ADS电路仿真软件对设计的低噪声放大器电路进行了优化设计和仿真,仿真结果表明在2.4GHz中心工作频率下,该低噪声放大器满足射频接收机的系统要求,它的噪声系数NF约为2.57dB,增益S21约为16.2dB,输入反射系数S11约为-13.3dB,输出反射系数S22约为-21.9dB。电路的输入匹配和输出匹配情况良好。  相似文献   

8.
张萌  何乐  刘铸 《现代雷达》2019,41(5):67-72
射频双向放大器作为雷达接收通道的前端模块芯片,其性能的优劣直接影响通道的性能。传统的双向放大器芯片往往是基于射频开关的拓扑结构设计的,在噪声性能和反向隔离度方面都有所不足。文中设计基于电源调制的双向放大器芯片,具有全新的电路拓扑结构,射频信号不通过射频开关而直接进入低噪声放大器,可以优化芯片的噪声性能;同时,截止的器件可以提高芯片的反向隔离度。设计中如何提高低噪声放大器的增益和噪声性能,以及如何利用有源滤波匹配技术实现射频输入输出端口的合并和匹配是两大难点和创新点。文中基于L 波段的双向放大器设计及流片的测试结果显示,芯片有良好的性能,充分验证了理论分析的正确性。  相似文献   

9.
基于PHEMT管的L波段LNA设计和实现   总被引:1,自引:0,他引:1  
根据PHEMT晶体管的特性、LNA微波频段的工作原理,设计和实现了应用广泛的L波段LNA,给出了基本设计思路和设计流程。  相似文献   

10.
设计了一款工作在2.4GHz的可变增益CMOS低噪声放大器,电路采用HJKJ0.18μm CMOS工艺实现。测试结果表明,最高增益为11.5dB,此时电路的噪声系数小于3dB,增益变化范围为0~11.5dB。在1.8V电压下,电路工作电流为3mA。  相似文献   

11.
为提升无线通信终端中射频模组的集成度、降低终端的实现成本,基于0.18μm CMOS工艺设计了一款2.4 GHz射频前端芯片,片上集成射频功率放大器(PA)、射频低噪声放大器(LNA)、射频开关、基准源电路及数字控制电路,PA和LNA的阻抗匹配网络均采用片上元件实现.测试结果显示,接收模式下,芯片的增益为11.2 dB,输入\\输出回波损耗分别为-5.8 dB及-21.1 dB,IIP3为3.9 dBm;发射模式下,芯片增益达26.8 dB,输入\\输出回波损耗分别为-21 dB及-14.2 dB,输出1 dB压缩点为23.5 dBm,峰值PAE达24%.本芯片对于2.4 GHz ISM频段通信系统具备一定的应用价值.  相似文献   

12.
《现代电子技术》2015,(22):118-121
低噪声放大器是射频接收系统的关键组成部分,决定了系统的噪声特性,直接影响接收灵敏度。提出一种利用自适应遗传算法设计低噪声放大器匹配电路的思路,自动优化交叉概率和变异概率,避免了易早熟的缺点。采用这一算法进行了放大器设计实验,放大器具有较低的噪声系数、较高的放大增益,以及较好的带外抑制效果。实验结果表明实测和软件仿真性能吻合较好,证明了自适应遗传算法设计的可靠性。  相似文献   

13.
超低频放大器的低噪声和抗干扰设计与实现   总被引:1,自引:0,他引:1  
随着通信、精密测量和自动控制等众多领域对微弱信号接收要求的日益提高,接收放大器的低噪声和抗干扰设计与实现已成为当前研究的重要课题之一。文中叙述了放大器的低噪声和抗干扰设计原则,并结合超低频的噪声特点,提出超低频低噪声放大器的实现方案。经测试表明,依照该方法可以设计实现噪声系数极小的超低频放大器,且性能稳定可靠,符合设计指标要求。  相似文献   

14.
分析了低噪声放大器的设计方法,介绍了一种用网络匹配法和Asoft公司的Designer软件包并通过晶体管模型来设计低噪声放大器的具体方法。该方法设计的低噪声放大器带宽为1.5GHz,增益为23.2dB且在带宽内性能十分稳定。  相似文献   

15.
基于TSMC 0.18μm CMOS工艺,设计了一种低噪声、高线性度的差分CMOS低噪声放大器。与传统的共源共栅结构相比,该电路在共源晶体管的栅源极并入一个电容以降低共源极的噪声;并在共栅极上引入一对交叉耦合电容和电感,以消除共栅极的噪声并提高电路的线性度。仿真结果表明,在2.4GHz的工作频率下,该电路的噪声系数仅有1.29 dB,该电路能够提供17dB的正向增益,良好的输入输出匹配,该放大器的输入三阶交调点为0.76dBm,功耗小于10mW。  相似文献   

16.
尹玉军 《中国新通信》2008,10(23):68-70
应用台积电(TSMC)0.18μm CMOS工艺模型,设计了一种2.4GHz全集成低噪声放大器。通过ADS(Advanced Design System)软件对电路进行了优化设计,仿真结果表明在1.8V电源电压下,工作电流约为6mA,输入输出匹配良好,在2.45GHz的中心频率下,它的噪声系数(NF)为2.605dB,增益(s21)为20.120dB。  相似文献   

17.
本文给出一种应用于无线传感器网络射频前端低噪声放大器的设计,采用SMIC0.18μmCMOS工艺模型。在CadenceSpectre仿真环境下的仿真结果表明:该低噪声放大器满足射频前端的系统要求,在2.45GHz的中心频率下增益可调,高增益时,噪声系数为2.9dB,输入P1dB压缩点为-19.8dBm,增益为20.5dB;中增益时,噪声系数为3.6dB,输入P1dB压缩点为-15.8dBm,增益为12.5dB;低增益时,噪声系数为6.0dB,输入P1dB压缩点为-16.4dB,增益为2.2dB。电路的输入输出匹配良好,在电源电压1.8V条件下,工作电流约为6mA。  相似文献   

18.
我们利用0.18μm CM O S工艺设计了低噪声放大器。所有电感采用片上螺旋电感,全集成在单个芯片上,并实现片内50Ω匹配。本次电路设计分析采用ADS仿真软件,电源电压1V,工作电流8mA,增益为15.4dB,噪声系数2.7dB,线性度指标IIP 3为-0.6dB。结论是CM O S工艺在工艺和模型方面的改进,使得CM O S RF电路设计更为精确,可集成度更高。  相似文献   

19.
本文分析了射频晶体放大器电路的工作特点、设计方法及设计步骤,利用晶体管ATF-55140设计一个2000MHz放大器,并给出了仿真结果。  相似文献   

20.
3~10 GHz SiGe HBTs超宽带低噪声放大器的设计   总被引:3,自引:2,他引:1  
根据UWB(Ultra-wideband)无线通信标准.提出了一款超宽带低噪声放大器并进行了设计.该放大器选用高性能的SiGe HBTs,同时采用并联和串联多重反馈的两级结构,以达到超宽频带、高增益、低噪声系数以及良好的输入输出匹配的目的.仿真结果表明,放大器在3-10 GHz带宽内,增益.S21高达21 dB,增益平坦度小于1.5 dB,噪声系数在2.4~3.3 dB之间.输入输出反射系数(S11和S22)均小于-9 dB,并且在整个频带内无条件稳定.所有结果表明该LNA性能良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号