首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The eosinophil-derived neurotoxin (EDN/RNase2) and its divergent orthologs, the mouse eosinophil-associated RNases (mEars), are prominent secretory proteins of eosinophilic leukocytes and are all members of the larger family of RNase A-type ribonucleases. While EDN has broad antiviral activity, targeting RNA viruses via mechanisms that may require enzymatic activity, more recent studies have elucidated how these RNases may generate host defense via roles in promoting leukocyte activation, maturation, and chemotaxis. This review provides an update on recent discoveries, and highlights the versatility of this family in promoting innate immunity.  相似文献   

2.
3.
The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed.  相似文献   

4.
Host defense peptides can modulate the innate immune response and boost infection-resolving immunity, while dampening potentially harmful pro-inflammatory (septic) responses. Both antimicrobial and/or immunomodulatory activities are an integral part of the process of innate immunity, which itself has many of the hallmarks of successful anti-infective therapies, namely rapid action and broad-spectrum antimicrobial activities. This gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections. This review details the role and activities of these peptides, and examines their applicability as development candidates for use against bacterial infections.  相似文献   

5.
Recently, the focus of murine caspase-11 and human orthologs caspase-4, -5 research has been on their novel function to induce noncanonical inflammasome activation in direct response to Gram-negative bacterial infection. On the other hand, a new role in anti-bacterial autophagy has been attributed to caspase-11, -4 and -5, which currently stands largely unexplored. In this review, we connect lately emerged evidence that suggests these caspases have a key role in anti-bacterial autophagy and discuss the growing implications of a danger molecule—extracellular ATP—and NADPH oxidase-mediated ROS generation as novel inducers of human caspase-4, -5 signaling during infection. We also highlight the adeptness of persistent pathogens like Porphyromonas gingivalis, a Gram-negative anaerobe and successful colonizer of oral mucosa, to potentially interfere with the activated caspase-4 pathway and autophagy. While, the ability of caspase-4, -5 to promote autophagolysosomal fusion is not well understood, the abundance of caspase-4 in skin and other mucosal epithelial cells implies an important role for caspase-4 in mucosal defense, supporting the view that caspase-4, -5 may play a non-redundant part in innate immunity. Thus, this review will join the currently disconnected cutting-edge research thereby proposing a working model for regulation of caspase-4, -5 in pathogen elimination via cellular-trafficking.  相似文献   

6.
ABSTRACT: Evidence exists regarding the potential role of exogenous nucleotides as regulators of the immune function in physically active humans, yet the potential use of nucleotides has been hindered by their low bioavailability after oral administration. We conducted a double-blind, placebo-controlled, randomized trial to assess the effect of sublingual nucleotides (50?mg/day) on salivary and serum immunity indicators as compared to placebo, both administered to healthy males aged 20 to 25?years for 14?days. Sublingual administration of nucleotides for 14?days increased serum immunoglobulin A, natural killer cells count and cytotoxic activity, and offset the post-exercise drop of salivary immunoglobulins and lactoferrin (P??0.05). It seems that sublingual administration of nucleotides for two weeks considerably affected immune function in healthy males.  相似文献   

7.
In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.  相似文献   

8.
Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK), which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori) infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV) has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis.  相似文献   

9.
Human saliva is a complex body fluid with more than 3000 different identified proteins. Besides rheological and lubricating properties, saliva supports wound healing and acts as an antimicrobial barrier. TFF peptides are secreted from the mucous acini of the major and minor salivary glands and are typical constituents of normal saliva; TFF3 being the predominant peptide compared with TFF1 and TFF2. Only TFF3 is easily detectable by Western blotting. It occurs in two forms, a disulfide-linked homodimer (Mr: 13k) and a high-molecular-mass heterodimer with IgG Fc binding protein (FCGBP). TFF peptides are secretory lectins known for their protective effects in mucous epithelia; the TFF3 dimer probably has wound-healing properties due to its weak motogenic effect. There are multiple indications that FCGBP and TFF3-FCGBP play a key role in the innate immune defense of mucous epithelia. In addition, homodimeric TFF3 interacts in vitro with the salivary agglutinin DMBT1gp340. Here, the protective roles of TFF peptides, FCGBP, and DMBT1gp340 in saliva are discussed. TFF peptides are also used to reduce radiotherapy- or chemotherapy-induced oral mucositis. Thus, TFF peptides, FCGBP, and DMBT1gp340 are promising candidates for better formulations of artificial saliva, particularly improving wound healing and antimicrobial effects even in the esophagus.  相似文献   

10.
Hepatitis E virus (HEV) usually causes self-limiting acute hepatitis, but the disease can become chronic in immunocompromised individuals. HEV infection in pregnant women is reported to cause up to 30% mortality, especially in the third trimester. Additionally, extrahepatic manifestations like neuronal and renal diseases and pancreatitis are also reported during the course of HEV infection. The mechanism of HEV pathogenesis remains poorly understood. Innate immunity is the first line of defense triggered within minutes to hours after the first pathogenic insult. Growing evidence based on reverse genetics systems, in vitro cell culture models, and representative studies in animal models including non-human primates, has implicated the role of the host’s innate immune response during HEV infection. HEV persists in presence of interferons (IFNs) plausibly by evading cellular antiviral defense. This review summarizes our current understanding of recognizing HEV-associated molecular patterns by host cell Pattern Recognition Receptors (PRRs) in eliciting innate immune response during HEV infection as well as mechanisms of virus-mediated immune evasion.  相似文献   

11.
Plants rely on multiple immune systems to protect themselves from pathogens. When pattern-triggered immunity (PTI)—the first layer of the immune response—is no longer effective as a result of pathogenic effectors, effector-triggered immunity (ETI) often provides resistance. In ETI, host plants directly or indirectly perceive pathogen effectors via resistance proteins and launch a more robust and rapid defense response. Resistance proteins are typically found in the form of nucleotide-binding and leucine-rich-repeat-containing receptors (NLRs). Upon effector recognition, an NLR undergoes structural change and associates with other NLRs. The dimerization or oligomerization of NLRs signals to downstream components, activates “helper” NLRs, and culminates in the ETI response. Originally, PTI was thought to contribute little to ETI. However, most recent studies revealed crosstalk and cooperation between ETI and PTI. Here, we summarize recent advancements in our understanding of the ETI response and its components, as well as how these components cooperate in the innate immune signaling pathways. Based on up-to-date accumulated knowledge, this review provides our current perspective of potential engineering strategies for crop protection.  相似文献   

12.
The oral mucosa is a site of intense immune activity, where a large variety of immune cells meet to provide a first line of defense against pathogenic organisms. Interestingly, the oral mucosa is exposed to a plethora of antigens from food and commensal bacteria that must be tolerated. The mechanisms that enable this tolerance are not yet fully defined. Many works have focused on active immune mechanisms involving dendritic and regulatory T cells. However, epithelial cells also make a major contribution to tolerance by influencing both innate and adaptive immunity. Therefore, the tolerogenic mechanisms concurring in the oral mucosa are intertwined. Here, we review them systematically, paying special attention to the role of oral epithelial cells.  相似文献   

13.
Understanding the host anti-fungal immunity induced by beta-glucan has been one of the most challenging conundrums in the field of biomedical research. During the last couple of decades, insights on the role of beta-glucan in fungal disease progression, susceptibility, and resistance have been greatly augmented through the utility of various beta-glucan cognate receptor-deficient mouse models. Analysis of dectin-1 knockout mice has clarified the downstream signaling pathways and adaptive effector responses triggered by beta-glucan in anti-fungal immunity. On the other hand, assessment of CR3-deficient mice has elucidated the compelling action of beta-glucans in neutrophil-mediated fungal clearance, and the investigation of EphA2-deficient mice has highlighted its novel involvement in host sensing and defense to oral mucosal fungal infection. Based on these accounts, this review focuses on the recent discoveries made by these gene-targeted mice in beta-glucan research with particular emphasis on the multifaceted aspects of fungal immunity.  相似文献   

14.
Saliva provides a medium for short-term adaptation to changes in diet composition, namely, the presence of plant secondary metabolites. Salivary proteins have biological functions that have particular influence on oral homeostasis, taste, and digestive function. Some salivary proteins, such as proline-rich proteins, are present in browsers but absent in grazers. Despite the significance of salivary proteins, their expression patterns in many herbivores are unknown. We investigated the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of parotid salivary proteins from two domesticated species, one a grazer, the sheep, Ovis aries, and the other a mixed feeder, the goat, Capra hircus, both fed on the same conventional diet. With 12.5% polyacrylamide linear gels, we observed uniform patterns of salivary proteins within the two species. In the goat profile, 21 major bands were observed, and 19 in the sheep profile. Each band was subjected to peptide mass fingerprinting for purposes of identification, allowing for 16 successful protein identifications. Marked differences were observed between the species in the region of 25–35 kDa molecular weights: one band was present in significantly different intensities; three bands were present only in goats; and one band was present only in sheep. This is the first report of a comparison of the protein salivary composition of sheep and goats and suggests that future research should be conducted to reveal a physiological function for salivary proteins related to the differences in feeding behavior of these species.  相似文献   

15.
Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.  相似文献   

16.
While type 2 immunity has traditionally been associated with the control of parasitic infections and allergic reactions, increasing evidence suggests that type 2 immunity exerts regulatory functions on inflammatory diseases such as arthritis, and also on bone homeostasis. This review summarizes the current evidence of the regulatory role of type 2 immunity in arthritis and bone. Key type 2 cytokines, like interleukin (IL)-4 and IL-13, but also others such as IL-5, IL-9, IL-25, and IL-33, exert regulatory properties on arthritis, dampening inflammation and inducing resolution of joint swelling. Furthermore, these cytokines share anti-osteoclastogenic properties and thereby reduce bone resorption and protect bone. Cellular effectors of this action are both T cells (i.e., Th2 and Th9 cells), but also non-T cells, like type 2 innate lymphoid cells (ILC2). Key regulatory actions mediated by type 2 cytokines and immune cells on both inflammation as well as bone homeostasis are discussed.  相似文献   

17.
Polymorphonuclear neutrophils (PMNs) are traditionally regarded as professional phagocytic and acute inflammatory cells that engulf the microbial pathogens. However, accumulating data have suggested that PMNs are multi-potential cells exhibiting many important biological functions in addition to phagocytosis. These newly found novel activities of PMN include production of different kinds of cytokines/chemokines/growth factors, release of neutrophil extracellular traps (NET)/ectosomes/exosomes and trogocytosis (membrane exchange) with neighboring cells for modulating innate, and adaptive immune responses. Besides, PMNs exhibit potential heterogeneity and plasticity in involving antibody-dependent cellular cytotoxicity (ADCC), cancer immunity, autoimmunity, inflammatory rheumatic diseases, and cardiovascular diseases. Interestingly, PMNs may also play a role in ameliorating inflammatory reaction and wound healing by a subset of PMN myeloid-derived suppressor cells (PMN-MDSC). Furthermore, PMNs can interact with other non-immune cells including platelets, epithelial and endothelial cells to link hemostasis, mucosal inflammation, and atherogenesis. The release of low-density granulocytes (LDG) from bone marrow initiates systemic autoimmune reaction in systemic lupus erythematosus (SLE). In clinical application, identification of certain PMN phenotypes may become prognostic factors for severe traumatic patients. In the present review, we will discuss these newly discovered biological and pathobiological functions of the PMNs.  相似文献   

18.
Tannins are characterized by protein-binding affinity. They have astringent/bitter properties that act as deterrents, affecting diet selection. Two groups of salivary proteins, proline-rich proteins and histatins, are effective precipitators of tannin, decreasing levels of available tannins. The possibility of other salivary proteins having a co-adjuvant role on host defense mechanisms against tannins is unknown. In this work, we characterized and compared the protein profile of mice whole saliva from animals fed on three experimental diets: tannin-free diet, diet with the incorporation of 5% hydrolyzable tannins (tannic acid), or diet with 5% condensed tannins (quebracho). Protein analysis was performed by one-dimensional gel electrophoresis combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight mass spectrometry to allow the dynamic study of interactions between diet and saliva. Since abundant salivary proteins obscure the purification and identification of medium and low expressed salivary proteins, we used centrifugation to obtain saliva samples free from proteins that precipitate after tannin binding. Data from Peptide Mass Fingerprinting allowed us to identify ten different proteins, some of them showing more than one isoform. Tannin-enriched diets were observed to change the salivary protein profile. One isoform of α-amylase was overexpressed with both types of tannins. Aldehyde reductase was only identified in saliva of the quebracho group. Additionally, a hypertrophy of parotid salivary gland acini was observed by histology, along with a decrease in body mass in the first 4 days of the experimental period. G. da Costa and E. Lamy have contributed equally to this work.  相似文献   

19.
The oral cavity is inhabited by a wide spectrum of microbial species, and their colonization is mostly based on commensalism. These microbes are part of the normal oral flora, but there are also opportunistic species that can cause oral and systemic diseases. Although there is a strong exposure to various microorganisms, the oral mucosa reduces the colonization of microorganisms with high rotation and secretion of various types of cytokines and antimicrobial proteins such as defensins. In some circumstances, the imbalance between normal oral flora and pathogenic flora may lead to a change in the ratio of commensalism to parasitism. Healthy oral mucosa has many important functions. Thanks to its integrity, it is impermeable to most microorganisms and constitutes a mechanical barrier against their penetration into tissues. Our study aims to present the role and composition of the oral cavity microbiota as well as defense mechanisms within the oral mucosa which allow for maintaining a balance between such numerous species of microorganisms. We highlight the specific aspects of the oral mucosa protecting barrier and discuss up-to-date information on the immune cell system that ensures microbiota balance. This study presents the latest data on specific tissue stimuli in the regulation of the immune system with particular emphasis on the resistance of the gingival barrier. Despite advances in understanding the mechanisms regulating the balance on the microorganism/host axis, more research is still needed on how the combination of these diverse signals is involved in the regulation of immunity at the oral mucosa barrier.  相似文献   

20.
The search for and analysis of new ligands for innate immunity receptors are of special significance for understanding the regulatory mechanisms of immune response. Here we show that the major heat shock protein 70 (Hsp70) can bind to and activate TREM-1, the innate immunity receptor expressed on monocytes. The Hsp70–TREM-1 interaction activates expression of TNFα and IFNγ mRNAs in monocytes and stimulates IL-2 secretion by PBMCs. Moreover, incubation of PBMCs with Hsp70 leads to an appearance of cytotoxic lymphocyte subpopulations active against the MHC-negative tumor cells. In addition, both the CD4+ T-lymphocytes and CD14+ monocytes are necessary for the Hsp70 signal transduction and a consequent activation of the cytotoxic lymphocytes. We believe that data presented in this study will broaden the views on the involvement of Hsp70 in the antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号