首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
基于条件随机域CRF模型的文本信息抽取   总被引:1,自引:0,他引:1  
为了抽取文本中的信息,在分析对比了4种统计建模原型后,选用条件随机域CRF建立抽取模型,提出了一种文本信息抽取的方法.该方法对文本分析后加标注,确定文本特征集,采用有限内存拟牛顿迭代方法L-BFGS算法估计CRF模型参数,根据训练学习得出的模型,实现科研论文数据集头部文本信息的抽取.实验结果表明,使用CRF模型的抽取准确率达到90%以上,远远高于使用HMM模型的抽取准确率.  相似文献   

2.
针对基于特征向量的实体关系抽取方法中特征向量一般构造方法存在的不足,提出了基于互信息的实体对特征向量构造方法.该方法引入词和实体关系类别之间的互信息作为一个句子中实体对左右两边上下文特征提取的判断标准,并对实体关系类别特征词条进行编码,在此基础上再对实体对左右两边的上下文信息进行编码.这样做压缩了实体对上下文信息编码的维数,突出了实体关系各类别特性.实验结果表明本文的实体关系特征向量构造方法提高了中文实体关系抽取的准确率和召回率.  相似文献   

3.
提出一种基于条件随机域模型的生物命名实体识别方法,结合单词构词特性以及距离依赖特性,在JNLPBA的GENIAV3.02数据上进行实验,测试结果表明,引入距离依赖后,系统的识别性能比只利用单特性的条件随机域方法提高2.54%,可获得较好的识别效果,提高了系统的识别效率。  相似文献   

4.
端到端实体关系抽取任务可以被分解成命名实体识别和关系抽取两个子任务,最近的工作多将这两个子任务联合建模。现有的流水线方法验证了在关系模型中融合实体类型信息的重要性和管道模型的潜力,但是它们忽略了文本中的某些实体可能同时具有多个类型,这种多义性的情况在中文数据集中尤为常见。为解决上述问题,提出了一种实体级联类型机制,并在此基础上开发了一个更适合中文关系抽取的管道模型,取名为CENTRELINE。这一流水线方法的实体模块是一个词-词关系分类模型,它以BERT和双向LSTM作为编码器、经过条件层归一化后引入空洞卷积,最后通过级联类型预测器输出实体及其级联类型。关系模块的输入仅由实体模块构建。该方法在DuIE1.0、DuIE2.0和CMeIE-V2数据集上的F1值分别比基线方法提高7.23%、6.93%和8.51%,并在DuIE1.0和DuIE2.0数据集上都实现了最先进的性能。消融实验表明,提出的级联类型机制和根据中文语言特征改进的管道模型,均对关系抽取性能具有明显的促进作用。  相似文献   

5.
作为信息抽取任务中极为关键的一项子任务,实体关系抽取对于语义知识库的构建和知识图谱的发展都有着重要的意义。对于中文而言,语义关系更加复杂,实体关系抽取的作用也就愈加显著,因此,对中文实体关系抽取的研究方法进行详细考察极为必要。本文从实体关系抽取的产生和发展开始,对目前基于中文的实体关系抽取技术现状作了阐述;按照关系抽取方法对语料的依赖程度分为4类:有监督的实体关系抽取、无监督的实体关系抽取、半监督的实体关系抽取和开放域的实体关系抽取,并对这4类抽取方法进行具体的分析和比较;最后介绍深度学习在中文实体关系抽取上的应用成果和发展前景。  相似文献   

6.
传统的分步骤事件抽取方法中,事件元素识别的结果无法指导事件类型识别,而事件类型识别的效果在很大程度上决定了事件抽取系统的整体性能。文中为解决事件类型识别对元素识别的后向依赖问题,将事件抽取看作序列标注,构建一个改进的条件随机域联合标注模型,将事件类型和事件元素在图模型中同时进行标注。同时,通过触发词嵌入试图解决事件抽取中的数据不平衡问题。ACE 2005中文语料上的实验表明,基于该模型的方法提高了事件类型识别的性能,最终F值达到63。53%。  相似文献   

7.
无指导的中文开放式实体关系抽取   总被引:1,自引:0,他引:1       下载免费PDF全文
传统的实体关系抽取需要预先定义关系类型体系,然而定义一个全面的实体关系类型体系是很困难的.开放式实体关系抽取技术解决了预先定义关系类型体系的问题,但是在中文上的研究还比较少.提出面向大规模网络文本的无指导开放式中文实体关系抽取方法,首先使用实体之间的距离限制和关系指示词的位置限制获取候选关系三元组;然后采用全局排序和类型排序的方法来挖掘关系指示词;最后使用关系指示词和句式规则对关系三元组进行过滤.在获取大量关系三元组的同时,还保证了80%以上的微观平均准确率.  相似文献   

8.
基于条件随机域的词性标注模型   总被引:3,自引:0,他引:3  
词性标注主要面临兼类词消歧以及未知词标注的难题,传统隐马尔科夫方法不易融合新特征,而最大熵马尔科夫模型存在标注偏置等问题。本文引入条件随机域建立词性标注模型,易于融合新的特征,并能解决标注偏置的问题。此外,又引入长距离特征有效地标注复杂兼类词,以及应用后缀词与命名实体识别等方法提高未知词的标注精度。在条件随机域模型框架下,本文进一步探讨了融合模型的方法及性能。词性标注开放实验表明,条件随机域模型获得了96.10%的标注精度。  相似文献   

9.
实体关系抽取有流水线和联合抽取两种,联合抽取能更有效地抽取实体关系,流水线的适应能力更灵活。为解决实体关系抽取中的关系重叠问题,提出一种双标注实体关系抽取框架。使用联合解码的方式抽取自然文本中的主体实体,使用流水线方式抽取出客体实体。使用联合解码保证抽取精度的同时继承流水线的灵活性。所提模型在信息抽取数据集DUIE和远程监督数据集NYT上进行实验,其结果表明,该模型与基线模型相比具有竞争力。  相似文献   

10.
李颖  郝晓燕  王勇 《计算机科学》2017,44(Z6):80-83
传统信息抽取针对特定的领域。当转换到新领域时,需要人工编写新的抽取规则和人工标记新的训练样本。开放信息抽取突破了传统信息抽取的局限性。现有的开放式信息抽取系统大多针对英文,然而,目前对于中文的研究相对较少,并主要以抽取三元组为主,没有针对中文抽取多元组的方法。因此提出了一种基于依存分析的中文开放式多元实体关系抽取方法。首先,对文本集进行预处理和依存关系分析;然后将动词视为候选关系词,将与此动词有满足条件的有效依存路径的基本名词短语视为实体词,关联两个及两个以上的实体词的关系词可与实体词组成候选多元实体关系组;最后,使用经过训练的逻辑回归分类器对多元实体关系组进行过滤。对百度百科数据集的抽取结果显示,所提方法在抽取大量实体关系多元组时准确性可达到81%。  相似文献   

11.
卓林  杨舟  赵朋朋  崔志明 《计算机工程》2011,37(5):59-61,64
提出一种基于混合二维条件随机场的Web记录抽取模型,以克服线性链条件随机场不能充分利用Web实体间二维依赖关系的缺点,且训练条件随机场模型时无需大量手工标注的样本数据。对当当网上的742个数据记录进行抽取,对比同等情况下的其他模型。实验结果表明,混合二维条件随机场模型在抽取TDS数据集时展现了更优越的性能。  相似文献   

12.
条件随机域与上下文线索结合的生物实体识别   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍一个用于在生物医学文献中识别基因、蛋白质等生物实体的识别方法。该方法基于条件随机域方法,选取适当特征进行实体识别,利用上下文线索进一步提高识别性能。实验结果表明上下文线索的引入使识别性能在条件随机域方法基础上提高了近3%,从而获得了较好的最终识别效果。  相似文献   

13.
近年来,信息抽取成为自然语言处理的一个热点,同时也是难点。针对不同的问题,大家提出了不同的方法,而大多数的方法是基于启发式规则或者抽象成分类问题,本文将从人物百科中抽取人物信息看成是一个序列标注的问题,利用条件随机场对生语料进行序列标注。此外,文中详细介绍数据分析的方法以及特征选取方法,所提出的方法直接从生语料中抽取,节省了大部分方法的数据预处理部分,同时避开了大部分方法使用的句法分析的特征,有效地提高了信息抽取的效率。在文章的最后做了两组对比实验,实验结果表明,本方法能够非常准确地从HTML生语料中抽取出人物信息。  相似文献   

14.
微博情感分析是对微博内容进行细粒度的挖掘,有着重要的研究价值。微博评价对象的抽取是微博情感分析研究的关键问题之一。为了提高中文微博评价对象抽取的准确率,该文在中文微博特征分析和微博评论本体构建研究的基础上,尝试从词、词性、情感词以及本体四个方面进行特征选择,采用CRFs模型对评价对象进行抽取。该文将提出的方法运用到COAE2014测评的Task5评价对象抽取任务中,宏平均准确率达到61.20%,在所有测评队伍中居第一。实验结果表明,将本体特征引入到CRFs模型中,能够有效地提高评价对象抽取的准确率。  相似文献   

15.
提出一种新的基于条件随机域和隐马尔可夫模型(HMM)的人类动作识别方法——HMCRF。目前已有的动作识别方法均使用隐马尔可夫模型及其变型,这些模型一个最突出的不足就是要求观察值相互独立。条件模型很容易表示上下文相关性,且可使用动态规划做到有效且精确的推论,它的参数可以通过凸函数优化训练得到。把条件图形模型应用于动作识别之上,并通过大量的实验表明,所提出的方法在识别正确率方面明显优于一般线性结构的CRF和HMM。  相似文献   

16.
中医临床病历是中医重要的科研数据资源,但目前临床病历仍以文本为主要表达形式,对病历数据深入分析的前提是进行结构化信息抽取,而命名实体抽取是其基础性步骤。针对中医临床病历的命名实体,如症状、疾病和诱因等的抽取问题,通过手工标注的413份病历数据(以中文字为特征)与4类特征模版,将条件随机场(CRF)、隐马尔科夫模型(HMM)和最大熵马尔科夫模型(MEMM)用于中医病历命名实体抽取的实验,并进行比较分析。结果表明,结合合适的特征模版,CRF命名实体抽取方法取得了较好的性能,F1值的症状达到0.80,疾病名称达到0.74,诱因0.74。与HMM和MEMM相比,CRF有最高的准确率和召回率,是一种较为适用的中医临床病历命名实体抽取方法。  相似文献   

17.
近年来,我国数字图书馆发展迅速,为馆藏资源的深度挖掘和利用提供了基础。该文以数字化的方志古籍为研究语料,在全文人工标注的基础上,通过分析物产别名的内外部特征,构建基于条件随机场的别名自动抽取模型,精确率达到了93.52%。实验结果表明,条件随机场模型能够较好的应用于方志类古籍内容挖掘,为数字图书馆资源利用提供借鉴。  相似文献   

18.
从无结构文本中抽取实体与实体之间的关系是自然语言处理领域的重要研究内容,同时也为构建知识图谱、问答系统等应用提供重要支撑。基于联合模型的实体关系抽取任务将实体识别和关系抽取同时进行,克服了传统实体关系抽取任务中先识别句子中的实体,然后再进行实体关系判断这两次任务中的错误累加。该文针对藏文语料匮乏、实体识别准确率不高等问题,提出了基于联合模型抽取藏文实体关系的方法。基于藏文实体关系抽取任务,提出以下方案: ①针对藏文分词准确率不高的问题,对藏文进行字级和词级两种方式进行预处理,并给出对比实验,结果表明采用字级处理方式较词级处理方式效果有所提高。②藏文是一种语法规则比较强的语言,名词、格助词等能明确指示句子各组块之间的语法和语义结构关系,因此该文将藏文的词性标注特征加入到藏文的字词向量中,实验结果证明了方法的有效性。③该文借鉴了联合模型处理的优势,提出基于联合模型处理方式,采用端到端的BiLSTM框架将藏文实体关系抽取任务转变为藏文序列标注的问题,实验结果表明,该文的方法较传统的基于藏文处理方式,如SVM算法和LR算法,准确率提高了30%~40%。  相似文献   

19.
实体关系抽取解决了原始文本中目标实体之间的关系分类问题,同时也被广泛应用于文本摘要、自动问答系统、知识图谱、搜索引擎和机器翻译中。由于中文句式和语法结构复杂,并且汉语有更多歧义,会影响中文实体关系分类的效果。该文提出了基于多特征自注意力的实体关系抽取方法,充分考虑词汇、句法、语义和位置特征,使用基于自注意力的双向长短期记忆网络来进行关系预测。在中文COAE 2016 Task 3和英文SemEval 2010 Task 8 数据集上的实验表明该方法表现出了较好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号