首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Medial axis transform (MAT) is well known for object representation. It is interesting to explore its use in different kinds of computations. In this paper an algorithm has been proposed for computation of normals at the boundaries of two-dimensional objects based on their MATs. In this technique, there is no requirement of linking boundary points during the computation compared to other existing techniques. The added advantage in the computation is that the computation can be restricted purely in the integer domain.  相似文献   

2.
Constructing medial axis transform of planar domains with curved boundaries   总被引:1,自引:0,他引:1  
The paper describes an algorithm for generating an approximation of the medial axis transform (MAT) for planar objects with free form boundaries. The algorithm generates the MAT by a tracing technique that marches along the object boundary rather than the bisectors of the boundary entities. The level of approximation is controlled by the choice of the step size in the tracing procedure. Criteria based on distance and local curvature of boundary entities are used to identify the junction or branch points and the search for these branch points is more efficient than while tracing the bisectors. The algorithm works for multiply connected objects as well. Results of implementation are provided.  相似文献   

3.
Skeletons have been playing an important role in shape analysis since the introduction of the medial axis in the sixties. The original medial axis definition is in the continuous Euclidean space. It is a skeleton with the following characteristics: centered, thin, homotopic (it has the same topology as the object), and reversible (sufficient for the reconstruction of the object). The discrete version of the Euclidean medial axis (MA) is also reversible and centered, but no longer homotopic nor thin. The combination of the MA with homotopic thinning algorithms can result in a topology preserving, reversible skeleton. However, such combination may generate thicker skeletons, and the choice of the thinning algorithm is not obvious. A robust and well defined framework for fast homotopic thinning available in the literature is defined in the domain of abstract complexes. Since the abstract complexes are represented in a doubled resolution grid, some authors have extended the MA to a doubled resolution grid and defined the discrete Euclidean medial axis in higher resolution (HMA). The HMA can be combined with the thinning framework defined on abstract complexes. Other authors have given an alternative definition of medial axis, which is a subset of the MA, called reduced discrete medial axis (RDMA). The RDMA is reversible, thinner than the MA, and it can be computed in optimal time. In this paper, we extend the RDMA to the doubled resolution grid and we define the high-resolution RDMA (HRDMA). We provide an optimal algorithm to compute the HRDMA. The HRDMA can be combined with the thinning framework defined on abstract complexes. The skeleton obtained by such combination is provided with strong characteristics, not found in the literature.  相似文献   

4.
Traditionally, the block-based medial axis transform (BB-MAT) and the chessboard distance transform (CDT) were usually viewed as two completely different image computation problems, especially for three dimensional (3D) space. In fact, there exist some equivalent properties between them. The relationship between both of them is first derived and proved in this paper. One of the significant properties is that CDT for 3D binary image V is equal to BB-MAT for image V' where it denotes the inverse image of V. In a parallel algorithm, a cost is defined as the product of the time complexity and the number of processors used. The main contribution of this work is to reduce the costs of 3D BB-MAT and 3D CDT problems proposed by Wang [65]. Based on the reverse-dominance technique which is redefined from dominance concept, we achieve the computation of the 3D CDT problem by implementing the 3D BB-MAT algorithm first. For a 3D binary image of size N3, our parallel algorithm can be run in O(logN) time using N3 processors on the concurrent read exclusive write (CREW) parallel random access machine (PRAM) model to solve both 3D BB-MAT and 3D CDT problems, respectively. The presented results for the cost are reduced in comparison with those of Wang's. To the best of our knowledge, this work is the lowest costs for the 3D BB-MAT and 3D CDT algorithms known. In parallel algorithms, the running time can be divided into computation time and communication time. The experimental results of the running, communication and computation times for the different problem sizes are implemented in an HP Superdome with SMP/CC-NUMA (symmetric multiprocessor/cache coherent non-uniform memory access) architecture. We conclude that the parallel computer (i.e., SMP/CC-NUMA architecture or cluster system) is more suitable for solving problems with a large amount of input size.  相似文献   

5.
《Graphical Models》2014,76(5):252-262
We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.  相似文献   

6.
MATHSM: medial axis transform toward high speed machining of pockets   总被引:2,自引:0,他引:2  
The pocketing operation is a fundamental procedure in NC machining. Typical pocketing schemes compute uniform successive offsets or parallel cuts of the outline of the pocket, resulting in a toolpath with C1 discontinuities. These discontinuities render the toolpath quite impractical in the context of high speed machining (HSM).This work addresses and fully resolves the need for a C1 continuous toolpath in HSM and offers MATHSM, a C1 continuous toolpath for arbitrary C1 continuous pockets. MATHSM automatically generates a C1 continuous toolpath that consists of primarily circular arcs while maximizing the radii of the generated arcs and, therefore, minimizing the exerted radial acceleration. MATHSM is especially suited for machining of elongated narrow pockets.  相似文献   

7.
We present a new method for constructing G1 blending surfaces between an arbitrary number of canal surfaces. The topological relation of the canal surfaces is specified via a convex polyhedron and the design technique is based on a generalization of the medial surface transform. The resulting blend surface consists of trimmed envelopes of one- and two-parameter families of spheres. Blending the medial surface transform instead of the surface itself is shown to be a powerful and elegant approach for blend surface generation. The performance of our approach is demonstrated by several examples.  相似文献   

8.
This paper proposes an approach for extracting non-manifold mid-surfaces of thin-wall solids using the chordal axis transform (CAT) (Prasad in CNLS Newsletter—Center for Nonlinear Studies, Los Alamos National Laboratory, vol 139, 1997). There is great demand for extracting mid-surfaces as it is used in dimension reduction. Quadros and Shimada previously used CAT in extracting 2-manifold mid-surfaces of a particular type of thin-wall solids. The proposed approach is an extension of the previous approach (Quadros and Shimada in 11th international meshing roundtable, 2002) in order to extract non-manifold mid-surfaces of general thin-wall solids. The three steps involved in extracting the mid-surface of a thin-wall solid are: (1) generating a tet mesh of a thin-wall solid without inserting interior nodes; (2) generating a raw mid-surface by smart cutting of tets; and (3) remeshing the raw mid-surface via smart clean-up. In the proposed approach, a discrete model (i.e., a tet mesh without any interior nodes) is used instead of working directly on a CAD model. The smart cutting of tets using CAT yields correct topology at the non-manifold region in the raw mid-surface. As the raw mid-surface is not directly suitable for engineering purposes, it is trimmed using a smart clean-up procedure and then remeshed. The proposed approach has been implemented using C++ in commercial ALGOR finite element analysis software. The proposed approach is computationally efficient and has shown effective results on industrial models.  相似文献   

9.
Given a compressed image in the restricted quadtree and shading format, this paper presents a fast algorithm for computing 2D discrete cosine transform (DCT) on the compressed grey image directly without the need to decompress the compressed image. The proposed new DCT algorithm takes O(K2logK+N2) time where the decompressed image is of size N×N and K denotes the number of nodes in the restricted quadtree. Since commonly K<N, the proposed algorithm is faster than the indirect method by decompressing the compressed image first, then applying the conventional DCT algorithm on the decompressed image. The indirect method takes O(N2logN) time.  相似文献   

10.
R. Dorado 《Computer aided design》2009,41(12):1050-1059
The medial axis (MA) of a planar region is the locus of those maximal disks contained within its boundary. This entity has many CAD/CAM applications. Approximations based on the Voronoi diagram are efficient for linear-arc boundaries, but such constructions are more difficult if the boundary is free. This paper proposes an algorithm for free-form boundaries that uses the relation between MA and offsets. It takes the curvature information from the boundary in order to find the self-intersections of successive offset curves. These self-intersection points belong to the MA and can be interpolated to obtain an approximation in Bézier form. This method also approximates the medial axis transform by using the offset distance to each self-intersection.  相似文献   

11.
This paper presents a saddle point programming approach to compute the medial axis (MA). After exploring the saddle point properties of the medial axis transform (MAT), the mathematical programming method is employed to establish the saddle point programming model of the MAT. By using the optimal conditions, i.e., the number and distribution of the tangent points between the boundary and medial axis disk, the one- and two-dimensional saddle point algorithms are developed. In order to determine the branch point, it is better to consider its generating mechanism. Here, we identify the branch point according to the sudden changes of the solutions to the one-dimensional saddle point algorithm. Hence, all the regular and irregular points of MA can be computed by a general algorithm, and it is proved to be efficient and accurate by the numerical examples.  相似文献   

12.
The Medial Axis Transform surface, (or MAT or MS) is proving to be a useful tool for several applications and geometric reasoning tasks. However, calculation of the MAT is a time-consuming task and the benefits of the mathematical-based tool are offset by the cost of the calculation. This paper presents a method for medial surface calculation which uses subdivision to simplify the problem and hence speed up the calculation, a so-called ‘divide-and-conquer’ approach. The basis for this is a modification of the dual structure of the original object. As the calculation proceeds this structure is broken up into sub-pieces each representing a simpler sub-part of the MAT. Perhaps more importantly, this method creates a correct node decomposition of the dual structure. The paper goes on to demonstrate some applications of the results for geometric tasks, specifically offsetting and model subdivision, which are normally expensive but are simpler based on the MAT calculation results.  相似文献   

13.
In this paper, we begin our research from the generating theory of the medial axis. The normal equidistant mapping relationships between two boundaries and its medial axis have been proposed based on the moving Frenet frames and Cesaro’s approach of the differential geometry. Two pairs of adjoint curves have been formed and the geometrical model of the medial axis transform of the planar domains with curved boundaries has been established. The relations of position mapping, scale transform and differential invariants between the curved boundaries and the medial axis have been investigated. Based on this model, a tracing algorithm for the computation of the medial axis has been generated. In order to get the accurate medial axis and branch points, a Two_Tangent_Points_Circle algorithm and a Three_Tangent_Points_Circle algorithm have been generated, which use the results of the tracing algorithm as the initial values to make the iterative process effective. These algorithms can be used for the computation of the medial axis effectively and accurately. Based on the medial axis transform and the envelope theory, the trimmed offset curves of curved boundaries have been investigated. Several numerical examples are given at the end of the paper.  相似文献   

14.
Y.-J. Chen  S.-J. Horng 《Computing》1997,59(2):95-114
To represent a region of a digital image as the union of maximal upright squares contained in the region is called the medial axis transform. In this paper, we present anO(logn) time parallel algorithm for the medial axis transform of ann×n binary image on an SIMD mesh-connected computers with hyperbus broadcasting usingn 3 processors.  相似文献   

15.
Extended grassfire transform on medial axes of 2D shapes   总被引:1,自引:0,他引:1  
  相似文献   

16.
This paper focuses on the generation of a three-dimensional (3D) mesh sizing function for geometry-adaptive finite element (FE) meshing. The mesh size at a point in the domain of a solid depends on the geometric complexity of the solid. This paper proposes a set of tools that are sufficient to measure the geometric complexity of a solid. Discrete skeletons of the input solid and its surfaces are generated, which are used as tools to measure the proximity between geometric entities and feature size. The discrete skeleton and other tools, which are used to measure the geometric complexity, generate source points that determine the size and local sizing function at certain points in the domain of the solid. An octree lattice is used to store the sizing function as it reduces the meshing time. The size at every lattice-node is calculated by interpolating the size of the source points. The algorithm has been tested on many industrial models, and it can be extended to consider other non-geometric factors that influence the mesh size, such as physics, boundary conditions, etc.Sandia National Laboratory is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000.  相似文献   

17.
Generating the medial surface for a general boundary representation model raises several difficulties. Problems might emerge from the complexity of the resulting equations, singularities caused by unforeseen relative boundary element positions and orientations, etc. The majority of the current algorithms are based on the topology of the boundary representation model and produce wireframes composed of straight lines regardless of the real medial surfaces. Many of the solids used in engineering can be represented by extrusions, delimited by a cross-section and an extrusion distance. This paper develops a fast and efficient method for creating the facetted approximations of the medial surfaces of extrusions generated by sweeping along the normal direction to the generating cross-section.
P. XirouchakisEmail:
  相似文献   

18.
Computational efficiency is still a great challenge for the generation of the Medial Axis (MA) for complicated CAD models. Current research mainly focuses on CPU-based MA generation methods. However, most of the methods emphasize using a single CPU. The highly-efficient methods based on parallel computing are still missing. In this study, a parallel method based on multi-CPU is proposed for the efficient MA generation of CAD models using distance dilation. By dividing the whole model into several parts for which MAs are calculated in parallel and then combined, computational efficiency can be greatly improved in theory and the computation time can be reduced nearly K times if K CPUs are used. Firstly, an adaptive division method is proposed to divide the voxelized model into blocks which have nearly the same number of voxels to balance the computational burden. Secondly, the local Euclidean Distance Transform (EDT) is calculated for each block based on the existing distance dilation method. Thirdly, the complete inter-dilation method is proposed to compute the influence between different blocks to get a global EDT for each block. Finally, each block generates a sub-MA separately and then all the generated MAs are combined to obtain the final MA. The last three processes can be efficiently conducted in parallel by using multiple CPUs. Several groups of experiments are conducted which demonstrate the good performance of the proposed methods in terms of efficiency.  相似文献   

19.
Despite its usefulness in many applications, the medial axis transform (MAT) is very sensitive to the change of the boundary in the sense that, even if a shape is perturbed only slightly, the Hausdorff distance between the MATs of the original shape and the perturbed one may be large. However, it is known that MATs of 2D domains are stable if we view this phenomenon with the one-sided Hausdorff distance. This result depends on the fact that MATs are stable if the differences between them are measured with the recently introduced hyperbolic Hausdorff distance. In this paper, we extend the result for the one-sided stability of the MAT to a class of 3D domains called weakly injective, which contains many important 3D shapes typically appearing in solid modeling. Especially, the weakly injective 3D domains can have sharp features like corners or edges. In fact, by using the stability of the MAT under the hyperbolic Hausdorff distance, we obtain an explicit bound for the one-sided Hausdorff distance of the MAT of a weakly injective 3D domain with respect to that of a perturbed domain, which is linear with respect to the domain perturbation. We discuss some consequences of this result concerning the computation and the approximation of the MAT of 3D objects.  相似文献   

20.
This paper presents an image reconstruction method for X-ray tomography from limited range projections. It makes use of the discrete Radon transform and a set of discrete orthogonal Tchebichef polynomials to define the projection moments and the image moments. By establishing the relationship between these two sets of moments, we show how to estimate the unknown projections from known projections in order to improve the image reconstruction. Simulation results are provided in order to validate the method and to compare its performance with some existing algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号