首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we present a method for automatic interpolation between adjacent discrete levels of detail to achieve smooth LOD changes in image space. We achieve this by breaking the problem into two passes: We render the two LOD levels individually and combine them in a separate pass afterwards. The interpolation is formulated in a way that only one level has to be updated per frame and the other can be reused from the previous frame, thereby causing roughly the same render cost as with simple non interpolated discrete LOD rendering, only incurring the slight overhead of the final combination pass. Additionally we describe customized interpolation schemes using visibility textures. The method was designed with the ease of integration into existing engines in mind. It requires neither sorting nor blending of objects, nor does it introduce any constrains in the LOD used. The LODs can be coplanar, alpha masked, animated, impostors, and intersecting, while still interpolating smoothly.  相似文献   

2.
We present a novel approach for visualizing the positional and geometrical variability of isosurfaces in uncertain 3D scalar fields. Our approach extends recent work by Pöthkow and Hege [ [PH10] ] in that it accounts for correlations in the data to determine more reliable isosurface crossing probabilities. We introduce an incremental update‐scheme that allows integrating the probability computation into front‐to‐back volume ray‐casting efficiently. Our method accounts for homogeneous and anisotropic correlations, and it determines for each sampling interval along a ray the probability of crossing an isosurface for the first time. To visualize the positional and geometrical uncertainty even under viewing directions parallel to the surface normal, we propose a new color mapping scheme based on the approximate spatial deviation of possible surface points from the mean surface. The additional use of saturation enables to distinguish between areas of high and low statistical dependence. Experimental results confirm the effectiveness of our approach for the visualization of uncertainty related to position and shape of convex and concave isosurface structures.  相似文献   

3.
In the paper, a new method for modelling trees at medium detail is presented. The method is based on a volumetric representation of trees, generated by an iterated function system (IFS). Alleviating the modeling restrictions of fractal techniques, extensions to the standard IFS are introduced. Practical aspects of modeling and rendering of trees, such as data structures and bounding volumes, are discussed. The advantages of the new method are described at the end together with some results.  相似文献   

4.
Depth-of-Field Rendering by Pyramidal Image Processing   总被引:1,自引:0,他引:1  
We present an image-based algorithm for interactive rendering depth-of-field effects in images with depth maps. While previously published methods for interactive depth-of-field rendering suffer from various rendering artifacts such as color bleeding and sharpened or darkened silhouettes, our algorithm achieves a significantly improved image quality by employing recently proposed GPU-based pyramid methods for image blurring and pixel disocclusion. Due to the same reason, our algorithm offers an interactive rendering performance on modern GPUs and is suitable for real-time rendering for small circles of confusion. We validate the image quality provided by our algorithm by side-by-side comparisons with results obtained by distributed ray tracing.  相似文献   

5.
This paper presents an improvement to the stochastic progressive photon mapping (SPPM), a method for robustly simulating complex global illumination with distributed ray tracing effects. Normally, similar to photon mapping and other particle tracing algorithms, SPPM would become inefficient when the photons are poorly distributed. An inordinate amount of photons are required to reduce the error caused by noise and bias to acceptable levels. In order to optimize the distribution of photons, we propose an extension of SPPM with a Metropolis‐Hastings algorithm, effectively exploiting local coherence among the light paths that contribute to the rendered image. A well‐designed scalar contribution function is introduced as our Metropolis sampling strategy, targeting at specific parts of image areas with large error to improve the efficiency of the radiance estimator. Experimental results demonstrate that the new Metropolis sampling based approach maintains the robustness of the standard SPPM method, while significantly improving the rendering efficiency for a wide range of scenes with complex lighting.  相似文献   

6.
Style Transfer Functions for Illustrative Volume Rendering   总被引:3,自引:0,他引:3  
Illustrative volume visualization frequently employs non-photorealistic rendering techniques to enhance important features or to suppress unwanted details. However, it is difficult to integrate multiple non-photorealistic rendering approaches into a single framework due to great differences in the individual methods and their parameters. In this paper, we present the concept of style transfer functions. Our approach enables flexible data-driven illumination which goes beyond using the transfer function to just assign colors and opacities. An image-based lighting model uses sphere maps to represent non-photorealistic rendering styles. Style transfer functions allow us to combine a multitude of different shading styles in a single rendering. We extend this concept with a technique for curvature-controlled style contours and an illustrative transparency model. Our implementation of the presented methods allows interactive generation of high-quality volumetric illustrations.  相似文献   

7.
It has long been recognized that transfer function setup for Direct Volume Rendering (DVR) is crucial to its usability. However, the task of finding an appropriate transfer function is complex and time-consuming even for experts. Thus, in many practical applications simpler techniques which do not rely on complex transfer functions are employed. One common example is Maximum Intensity Projection (MIP) which depicts the maximum value along each viewing ray. In this paper, we introduce Maximum Intensity Difference Accumulation (MIDA), a new approach which combines the advantages of DVR and MIP. Like MIP, MIDA exploits common data characteristics and hence does not require complex transfer functions to generate good visualization results. It does, however, feature occlusion and shape cues similar to DVR. Furthermore, we show that MIDA – in addition to being a useful technique in its own right – can be used to smoothly transition between DVR and MIP in an intuitive manner. MIDA can be easily implemented using volume raycasting and achieves real-time performance on current graphics hardware.  相似文献   

8.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

9.
This paper presents a method to accelerate algorithms that need a correct and complete visibility ordering of their data for rendering. The technique works by pre‐sorting primitives in object‐space using three lists (one for each axis: X, Y and Z), and then combining the lists using graphics hardware by rendering each list to a texture and merging the textures in the end. We validate our algorithm by applying it to the splatting technique using several types of rendering, including point‐based rendering and volume rendering. We also detail our hardware implementation for volume rendering using point sprites.  相似文献   

10.
We present an algorithm for robust and efficient contact handling of deformable objects. By being aware of the internal dynamics of the colliding objects, our algorithm provides smooth rolling and sliding, stable stacking, robust impact handling, and seamless coupling of heterogeneous objects, all in a unified manner. We achieve dynamicsawareness through a constrained dynamics formulation with implicit complementarity constraints, and we present two major contributions that enable an efficient solution of the constrained dynamics problem: a time stepping algorithm that robustly ensures non-penetration and progressively refines the formulation of constrained dynamics, and a new solver for large mixed linear complementarity problems, based on iterative constraint anticipation. We show the application of our algorithm in challenging scenarios such as multi-layered cloth moving at high velocities, or colliding deformable solids simulated with large time steps.  相似文献   

11.
Motion based Painterly Rendering   总被引:1,自引:0,他引:1  
Previous painterly rendering techniques normally use image gradients for deciding stroke orientations. Image gradients are good for expressing object shapes, but difficult to express the flow or movements of objects. In real painting, the use of brush strokes corresponding to the actual movement of objects allows viewers to recognize objects' motion better and thus to have an impression of the dynamic. In this paper, we propose a novel painterly rendering algorithm to express dynamic objects based on their motion information. We first extract motion information (magnitude, direction, standard deviation) of a scene from a set of consecutive image sequences from the same view. Then the motion directions are used for determining stroke orientations in the regions with significant motions, and image gradients determine stroke orientations where little motion is observed. Our algorithm is useful for realistically and dynamically representing moving objects. We have applied our algorithm for rendering landscapes. We could segment a scene into dynamic and static regions, and express the actual movement of dynamic objects using motion based strokes.  相似文献   

12.
Image storyboards of films and videos are useful for quick browsing and automatic video processing. A common approach for producing image storyboards is to display a set of selected key‐frames in temporal order, which has been widely used for 2D video data. However, such an approach cannot be applied for 3D animation data because different information is revealed by changing parameters such as the viewing angle and the duration of the animation. Also, the interests of the viewer may be different from person to person. As a result, it is difficult to draw a single image that perfectly abstracts the entire 3D animation data. In this paper, we propose a system that allows users to interactively browse an animation and produce a comic sequence out of it. Each snapshot in the comic optimally visualizes a duration of the original animation, taking into account the geometry and motion of the characters and objects in the scene. This is achieved by a novel algorithm that automatically produces a hierarchy of snapshots from the input animation. Our user interface allows users to arrange the snapshots according to the complexity of the movements by the characters and objects, the duration of the animation and the page area to visualize the comic sequence. Our system is useful for quickly browsing through a large amount of animation data and semi‐automatically synthesizing a storyboard from a long sequence of animation.  相似文献   

13.
Placement of Deformable Objects   总被引:1,自引:0,他引:1  
With the increasing complexity of photorealistic scenes, the question of building and placing objects in three‐dimensional scenes is becoming ever more difficult. While the question of placement of rigid objects has captured the attention of researchers in the past, this work presents an intuitive and interactive scheme to properly place deformable objects with the aid of free‐form deformation tools. The presented scheme can also be used to animate the locomotion of nonrigid objects, most noticeably animals, and adapt the motion to arbitrary terrain. The automatic construction of our free‐form deformation tool is completely hidden from the end user, and hence, circumvents the difficulties typically faced in manipulating these deformation functions. Further, a precise bound on the error that is introduced by applying free‐form deformations to polygonal models is presented, along with an almost‐optimal adaptive refinement algorithm to achieve a certain accuracy in the mapping.  相似文献   

14.
We present a novel multi‐view, projective texture mapping technique. While previous multi‐view texturing approaches lead to blurring and ghosting artefacts if 3D geometry and/or camera calibration are imprecise, we propose a texturing algorithm that warps (“floats”) projected textures during run‐time to preserve crisp, detailed texture appearance. Our GPU implementation achieves interactive to real‐time frame rates. The method is very generally applicable and can be used in combination with many image‐based rendering methods or projective texturing applications. By using Floating Textures in conjunction with, e.g., visual hull rendering, light field rendering, or free‐viewpoint video, improved rendering results are obtained from fewer input images, less accurately calibrated cameras, and coarser 3D geometry proxies.  相似文献   

15.
Tone mapping algorithms offer sophisticated methods for mapping a real-world luminance range to the luminance range of the output medium but they often cause changes in color appearance. In this work we conduct a series of subjective appearance matching experiments to measure the change in image colorfulness after contrast compression and enhancement. The results indicate that the relation between contrast compression and the color saturation correction that matches color appearance is non-linear and smaller color correction is required for small change of contrast. We demonstrate that the relation cannot be fully explained by color appearance models. We propose color correction formulas that can be used with existing tone mapping algorithms. We extend existing global and local tone mapping operators and show that the proposed color correction formulas can preserve original image colors after tone scale manipulation.  相似文献   

16.
We present a design technique for colors with the purpose of lowering the energy consumption of the display device. Our approach is based on a screen space variant energy model. The result of our design is a set of distinguishable iso-lightness colors guided by perceptual principles. We present two variations of our approach. One is based on a set of discrete user-named (categorical) colors, which are analyzed according to their energy consumption. The second is based on the constrained continuous optimization of color energy in the perceptually uniform CIELAB color space. We quantitatively compare our two approaches with a traditional choice of colors, demonstrating that we typically save approximately 40 percent of the energy. The color sets are applied to examples from the 2D visualization of nominal data and volume rendering of 3D scalar fields.  相似文献   

17.
Visualisation of taxonomies and sets has recently become an active area of research. Many application fields now require more than a strict classification of elements into a hierarchy tree. Euler diagrams, one of the most natural ways of depicting intersecting sets, may provide a solution to these problems.
In this paper, we present an approach for the automatic generation of Euler-like diagrams. This algorithm differs from previous approaches in that it has no undrawable instances of input, allowing it to be used in systems where the output is always required. We also improve the readability of Euler diagrams through the use of Bézier curves and transparent coloured textures. Our approach has been implemented using the Tulip platform. Both the source and executable program used to generate the results are freely available.  相似文献   

18.
Displaying panoramic and wide angle views on a flat 2D display surface is necessarily prone to distortions. Perspective projections are limited to fairly narrow view angles. Cylindrical and spherical projections can show full 360° panoramas, but at the cost of curving straight lines, interfering with the perception of salient shapes in the scene.
In this paper, we introduce locally-adapted projections . Such projections are defined by a continuous projection surface consisting of both near-planar and curved parts. A simple and intuitive user interface allows the specification of regions of interest to be mapped to the near-planar parts, thereby reducing bending artifacts. We demonstrate the effectiveness of our approach on a variety of panoramic and wide angle images, including both indoor and outdoor scenes.  相似文献   

19.
We extend the rendering technique for continuous scatterplots to allow for a broad class of interpolation methods within the spatial grid instead of only linear interpolation. To do this, we propose an approach that projects the image of a cell from the spatial domain to the scatterplot domain. We approximate this image using either the convex hull or an axis-aligned rectangle that forms a tight fit of the projected points. In both cases, the approach relies on subdivision in the spatial domain to control the approximation error introduced in the scatterplot domain. Acceleration of this algorithm in homogeneous regions of the spatial domain is achieved using an octree hierarchy. The algorithm is scalable and adaptive since it allows us to balance computation time and scatterplot quality. We evaluate and discuss the results with respect to accuracy and computational speed. Our methods are applied to examples of 2-D transfer function design.  相似文献   

20.
Fiber tracking is a standard tool to estimate the course of major white matter tracts from diffusion tensor magnetic resonance imaging (DT‐MRI) data. In this work, we aim at supporting the visual analysis of classical streamlines from fiber tracking by integrating context from anatomical data, acquired by a T1‐weighted MRI measurement. To this end, we suggest a novel visualization metaphor, which is based on data‐driven deformation of geometry and has been inspired by a technique for anatomical fiber preparation known as Klingler dissection. We demonstrate that our method conveys the relation between streamlines and surrounding anatomical features more effectively than standard techniques like slice images and direct volume rendering. The method works automatically, but its GPU‐based implementation allows for additional, intuitive interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号