共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
随着科学技术的高速发展,高性能的便携式电子产品,如各种便携式通讯设备(无线电话机、对讲机等)、小型办公自动化设备(膝上计算机、文字处理机、电子打字机等)、袖珍液晶电视机、收录机等、小家电便携工具(充电式手电钻、真空吸尘器、剃须器、手 相似文献
3.
4.
5.
6.
7.
锂二次电池中聚合物电解质及隔膜的研究进展 总被引:2,自引:0,他引:2
本文对锂二次电池中应用的聚合物电解质和隔膜作了概述。简要介绍了聚合物电解质、隔膜的种类和制备方法及其对电池性能的影响,以及聚合物电解质和隔膜的研究近况和应用前景。 相似文献
8.
9.
商用有机隔膜因其分子结构中缺乏极性和刚性基团而表现出较差的电解液浸润性和严重的热收缩性,不利于锂离子电池的安全高效运行。天然矿物因具有独特的晶体结构、良好的润湿性、优异的热稳定性和机械稳定性,使其在有机隔膜改性领域有着广阔的应用前景。总结了一维矿物、二维矿物、三维矿物在隔膜材料中的应用现状,介绍了涂覆改性、共混改性2种隔膜改性方式,综述了静电纺丝法、相转化法、浸涂法、热致交联法、固相烧结法等隔膜材料制备工艺,并展望了天然矿物在锂离子电池隔膜领域的研究趋势。 相似文献
10.
11.
12.
Nickel metal hydride batteries in bipolar design offer significant advantages as a power storage system for electric vehicles. This study deals with some aspects in structure design and development of bipolar nickel metal hydride batteries. An improvement on conventional bipolar structure was made, and some novel sealed bipolar nickel metal hydride batteries with 6 cells were assembled and studied. Testing results showed that the improved structure effectively protected the worst single cell of bipolar battery, and led to a better pressure and cycle performances of novel batteries compared with conventional ones. In addition, the improved bipolar batteries showed excellent discharge and recharge ability, and low resistance in electrochemical tests. As simulating hybrid electric vehicle working conditions, the batteries displayed good stability during pulse cycles, which indicated the possibility of being used on electric vehicles. 相似文献
13.
Fabrication of bipolar nickel metal hydride batteries with nanometer copper oxide as anodic additive
The bipolar nickel metal hydride batteries were fabricated with a novel anodic additive of nanometer copper oxide. Cycle voltammetry indicated that the nanometer copper oxide in the anode electrode was reduced to copper in the first charge, and SEM and EDS proved the sphere copper particles deposited on the alloy surface and stably existed in the next cycles. EIS results revealed the lower contact resistance and charge transfer resistance of the nanomaterial added anode electrode. Moreover, the bipolar battery with the nanometer additive displayed excellent electric performance and increased specific energy and power in electrochemical tests, which made it better meet the requirement of power sources for electric and hybrid vehicles. The present work has provided a novel additive of the anode electrode to effectively improve the performance of the bipolar Ni/MH batteries. 相似文献
14.
15.
16.
Cylindrical nickel metal hydride (Ni-MH) battery with high specific volume capacity was prepared by using the oxyhydroxide Ni(OH)2 and AB5 type hydrogen storage alloy and adjusting the designing parameters of positive and negative electrodes. The oxyhydroxide Ni(OH)2 was synthesized by oxidizing spherical β-Ni(OH)2 with chemical method. The X-ray diffraction (XRD) patterns and the Fourier transform infrared (PT-IR) spectra indicated that 7-NiOOH was formed on the oxyhydroxide Ni(OH)2 powders, and some H2O molecules were inserted into their crystal lattice spacing. The battery capacity could not be improved when the oxyhydroxide Ni(OH)2 sample was directly used as the positive active materials. However, based on the conductance and residual capacity of the oxyhydroxide Ni(OH)2 powders, AA size Ni-MH battery with 2560 mA.h capacity and 407 W·h·L^-1 specific volume energy at 0.2C was obtained by using the commercial spherical β-Ni(OH)2 and AB5-type hydrogen-storage alloy powders as the active materials when 10% mass amount of the oxyhydroxide Ni(OH)2 with 2.50 valence was added to the positive active materials and subsequently the battery designing parameters were adjusted as well. The as-prepared battery showed 70% initial capacity after 80 cycles at 0.5C. The possibility for adjusting the capacity ratio of positive and negative electrodes from 1 : 1.35 to 1 : 1.22 was demonstrated preliminarily. It is considered the as-prepared battery can meet the requirement of some special portable electrical instruments. 相似文献
17.
N Tzanetakis K Scott 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2004,79(9):927-934
A combination of hydrometallurgical and electrochemical processes has been developed for the separation and recovery of nickel and cobalt from cylindrical nickel–metal hydride rechargeable batteries. Leaching tests revealed that a 4 mol dm?3 hydrochloric acid solution at 95 °C was suitable to dissolve all metals from the battery after 3 h dissolution. The rare earths were separated from the leaching solution by solvent extraction with 25% bis(2‐ethylhexyl)phosphoric acid (D2EHPA) in kerosene. The nickel and cobalt present in the aqueous phase were subjected to electrowinning. Galvanostatic tests on simulated aqueous solutions investigated the effect of current density, pH, and temperature with regard to current efficiency and deposit composition and morphology. The results indicated that achieving an Ni? Co composition with desirable properties was possible by varying the applied current density. Preferential cobalt deposition was observed at low current densities. Galvanostatic tests using solutions obtained from treatment of batteries revealed that the aqueous chloride phase, obtained from the extraction, was suitable for recovery of nickel and cobalt through simultaneous electrodeposition. Scanning electron micrography and X‐ray diffraction analysis gave detailed information of the morphology and the crystallographic orientation of the obtained deposits. Copyright © 2004 Society of Chemical Industry 相似文献
18.