首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Adsorption behavior of gel-type weak acid resin (110-H) for Pb^2+   总被引:3,自引:2,他引:1  
The adsorption properties of a novel gel-type weak acid resin (110-H) for Pb^2+ were investigated using chemical methods and IR spectrometry. The optimal adsorption condition of 110-H for Pb^2+ is at pH=6.49 in HAc-NaAc medium and the statically saturated adsorption capacity is 485 mg/g at 298 K. Pb^2+ adsorbed on 110-H resin can be eluted with 0.025 mol/L HCl quantificationally. The adsorption rate constants determined under the temperatures of 288, 298, 308 and 318 K are 2.46×10^-5, 3.82×10^-5, 4.46×10^-5 and 5.71×10^-5 s^-1, respectively. The apparent activation energy, Ea, is 18.1 kJ/mol and the thermodynamic parameters of adsorption, △H=20.9 kJ/mol, △S=-161 J/(mol·K) and △G298 K =-48.0 kJ/mol, respectively. The adsorption behavior of 110-H resin for Pb^2+ accords with the Langmuir isotherm. Infrared spectra show that the oxygen atoms of the functional group of resin coordinate with Pb^2+ to form the coordination bands.  相似文献   

2.
The oxidation behaviors of bulk Ti3Si(1-x)AlxC2 prepared by hot pressing were investigated. The results show that the isothermal oxidation behavior of Ti3SiC2 obeys a parabolic law between 900 and 1 100 ℃ and follows a two-step parabolic rate law between 1 200 ℃ and 1 300 ℃. The cyclic oxidation behavior of material is assumed to obey a three-step parabolic rate law at 1 100 ℃ and 1 200 ℃. The calculated activation energy of isothermal oxidation is 101.43 kJ/mol. The oxide layers which consist of a mass of α-Al2O3 and little TiO2 and SiO2 are observed on Ti3SiC2 as a dense and adhesive protect scale. The oxidation mechanism varies with the additive aluminum that greatly improves the oxidation resistance of Ti3SiC2.  相似文献   

3.
Extraction of titanium(Ⅳ)from real chloride leach liquor of ilmenite was carried out with 0.1 mol L~(-1)di-(2-ethylhexyl)phosphoric acid(HDEHP)in kerosene.Equilibrium and kinetics studies for Ti(Ⅳ)were carried out in the presence of impurities that were leached with Ti(Ⅳ).Parameters affecting extraction rate of Ti(Ⅳ)from chloride media in the presence of Fe(Ⅲ),Mg(Ⅱ),and Al(Ⅲ)were studied to evaluate the stoichiometry of extracted Ti(Ⅳ)species.It is found that the extraction rate of Ti(Ⅳ)is dependent on the extractant concentration and pH of solution.Under the optimum conditions,more than 95%Ti(Ⅳ)can be extracted.On the basis of slope analysis method,the extracted species of Ti(Ⅳ)appears to be[TiO(H_2A_2)_2]_(org),where H_2A_2 refers to HDEHP.Further,the kinetic studies of the extraction process of Ti(Ⅳ)and other metal ion impurities were carried out by a Lewis cell with a constant interfacial area of 16.7 cm~2.Analysis of the experimental results suggests that TiO~(2+)extraction rate by HDEHP is the first with respect to hydrogen ion concentration and HDEHP concentration.The results are interpreted by a reaction mechanism where the extraction process is controlled by a diffusion process at the interface rather than in the bulk phase.  相似文献   

4.
The cross-sectional analysis on hydroxyapatite (HA) coating and HA TiO2 composite coating was conducted by using electron probe microanalyser (EPMA). The results reveal that annealing at 650℃ leads to the cracking within the HA coating or along the coating/substrate interface. The ribbon-like regions in HA coating are verified to contain less PO4^4- groups resulted from the high temperature melting of HA particles in plasma flame. From the viewpoint of microstructural observation, it can be concluded that the addition of TiO2 into HA coating can effectively strengthen and toughen the whole coating system with a shift of the well-bonded interface from the THA (top HA) coating/HTBC (HA TiO2 bond coat) interface in the as-sprayed THBC (top HA-HTBC) coating to the HTBC/Ti substrate interface in the heat treated THBC coating. The THA coating bonds well to Ti substrate per-haps via its TiO2 hobnobbing with the Ti oxides formed on the Ti substrate.  相似文献   

5.
The thermal behavior of Tb2(BA)6(PHEN)2 (BA: benzoate, and PHEN: 1,10-phenanthroline) in a static air atmospbere was investigated by TG-DTG, SEM and IR techniques. By the kinetic method of processing thermal analysis data put forward by Malek et al., it is defined that the kinetic model for the first-step thermal decomposition is SB(m, n). The activation energy E for this step reaction is 99.07 kJ/mol, the entropy of activation ΔS^≠ is -84.72 J/mol, the enthalpy of activation ΔH^≠ is 94.26 kJ/mol, the free energy of activation ΔG^≠ is 144.77 kJ/mol and the pre-exponential factor lnA is 20.93.The lifetime equation at mass-loss of 10% was deduced as lnτ = -29.0312 19760.83/T by isothermal thermogravimetric analysis.  相似文献   

6.
The influence of transformation pH value on the performance of nano-scale Ni(OH)2 was analyzed. The measurement results of XRD and TEM indicate that the samples are composed of β-Ni(OH)2 with crystal size of 20-50 nm, and the crystal lattice parameters of nano-scale Ni(OH)2 prepared at different transformation pH values are different. With the increase of transformation pH value, the agglomeration of nano-scale Ni(OH)2 becomes obvious. Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) measurement results show that transformation pH value affects the proton diffusion coefficient(D) and charge-transfer resistance(Rot) of the material. The specific capacity is up to 327.8 mA·h/g, and the discharge performance of electrodes depends on both D and Rct, so the kinetic characteristics that electrodes reaction is controlled by both mass-transfer step and charge-transfer step was put forward.  相似文献   

7.
EXTRACTION KINETICS OF YTTRIUM WITH PURIFIED CYANEX 923 FROM NITRATE MEDIUM   总被引:2,自引:0,他引:2  
Mass transfer and extraction kinetics of yttrium with the purified Cyanex 923 in n-heptane from nitrate medium have been investigated by using a constant interfacial cell with laminar flow at 298K. The interfacial adsorption properties of purified Cyanex 923-heptane-0.20mol/L (H, Na)NO3 were studied at 298K. The experimental results show that the mass transfer is controlled by diffusion and the chemical reactions are carried out in the interfacial zone. The extraction rates of yttrium were measured at different chemical compositions by varying ionic strength, pH values and the purified Cyanex 923 concentrations. The initial extraction rate equations were obtained.  相似文献   

8.
The electrochemical properties of spinel compound LiNi0.5Mn1.2Ti0.3O4 were investigated in this study.The chemicals LiAc·2H2O,Mn(Ac)2·2H2O,Ni(Ac)2·4H2O,and Ti(OCH3)4 were used to synthesize LiNi0.5Mn1.2Ti0.3O4 by a simple sol-gel method.The discharge capacity of the sample reached 134 mAh/g at a current rate of 0.1C.The first and fifth cycle voltammogram almost overlapped,which showed that the prepared sample LiNi0.5Mn1.2Ti0.3O4 had excellent good cycle performance.There were two oxidation peaks at 4.21 V and 4.86 V,and two reduction peaks at 4.55 V and 3.88 V in the cycle voltammogram,respectively.By electrochemical impedance spectroscopy and its fitted result,the lithium ion diffusion coefficient was measured to be approximately 7.76 × 10?11 cm2/s.  相似文献   

9.
The kinetics of oxidative leaching of ocean polymetallic nodules in molten potassium hydroxide medium was investigated in terms of the gas-flow rate, stirring rate, reaction time, reaction temperature and partial pressure of oxygen on the ratio of manganese conversion in ocean polymetallic nodules. The category of the rate controlling step was determined. The process of the liquid-phase oxidation reaction can be described by surface chemical reaction-controlled non-reaction shrinking core model(SCM), the apparent activation energy was achieved and the rate equation was put forward. From the equation, it can be concluded that the reaction rate mainly depends on the reaction temperature and the partial pressure of oxygen.  相似文献   

10.
The dissolution kinetics of vanadium trioxide in sulphuric acid-oxygen medium was examined. It was determined that the concentration of sulphuric acid and stirring speed above 800 r min 1 did not significantly affect vanadium extraction. The dissolution rate increased with increasing temperature and oxygen partial pressure, but decreased with increasing particle size. The dissolution kinetics was controlled by the chemical reaction at the surface with the estimated activation energy of 43.46 kJ·mol-1. The l...  相似文献   

11.
Precursor of nanocrystalline Zn0.5Ni0.5Fe2O4 was obtained by grinding mixture of ZnSO4·7H2O,NiSO4·6H2O,FeSO4·7H2O,and Na2CO3·10H2O under the condition of surfactant polyethylene glycol(PEG)-400 being present at room temperature,washing the mixture with water to remove soluble inorganic salts and drying it at 373 K.The spinel Zn0.5Ni0.5Fe2O4 was obtained via calcining precursor above 773 K.The precursor and its calcined products were characterized by differential scanning calorimetry(DSC) ,Fourier transform infrared(FT-IR) ,X-ray diffraction(XRD) ,and vibrating sample magnetometer(VSM) .The result showed that Zn0.5Ni0.5Fe2O4 obtained at 1073 K had a saturation magnetization of 74 A·m2·kg-1.Kinetics of the crystallization process of Zn0.5Ni0.5Fe2O4 was studied using DSC technique,and kinetic parameters were determined by Kissinger equation and Moynihan et al.equation.The value of the activation energy associated with the crystallization process of Zn0.5Ni0.5Fe2O4 is 220.89 kJ·mol-1.The average value of the Avrami exponent,n,is equal to 1.59±0.13,which suggests that crystallization process of Zn0.5Ni0.5Fe2O4 is the random nucleation and growth of nuclei reaction.  相似文献   

12.
Nano-TiO2 was employed for the adsorption of gallium from aqueous solution in batch equilibrium experiments to investigate its adsorption properties. It was found that the adsorption efficiency of Ga(Ⅲ) was more than 96% at pH 3.0. The adsorption capacities and rates of Ga(Ⅲ) onto nano-TiO2 were evaluated as a function of solution concentration and temperature. The results were analyzed using the Langmuir adsorption isotherms. Adsorption isothermal data could be well interpreted by the Langmuir model. The mean energy of adsorption, 15.81 kJ·mol-1, was calculated from the D-R adsorption isotherm. The kinetic experimental data properly correlate with the pseudo-second-order kinetic model. The thermodynamic parameters for the process of adsorption have been estimated. The △ H Οand △ GΟvalues of gallium(Ⅲ) adsorption on nano-TiO2 showed an endothermic and spontaneous nature of adsorption.  相似文献   

13.
The precursor of nanocrystalline ZrO2 was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O,and Na2CO3·10H2O as raw materials.The nanocrystalline ZrO2 was obtained by calcining the precursor.The precursor and its calcined products were characterized using TG/DTA,FT-IR,XRD,and SEM.The results showed that the precursor dried at 353 K was a zirconyl carbonate compound.When the precursor was calcined at 673 K for 150 min,highly crystallization ZrO2 with tetragonal structure (space group P42/nmc (137)) was obtained with a crystallite size of 24 nm.However,when the precursor was calcined at 1023 K for 150 min,highly crystallization ZrO2 with monoclinic structure (space group P21/c (14)) was obtained with a crystallite size of 20 nm.The mechanism and kinetics of the thermal process of the precursor were studied using DTA and XRD techniques.Based on the Kissinger and Arrhenius equation,the values of the activation energies associated with the thermal process of the precursor were determined to be 26.80 and 566.73 kJ·mol-1 for the first and third steps,respectively.The mechanism of ZrO2 phase transition from tetragonal to monoclinic structure is the random nucleation and growth of nuclei reaction.  相似文献   

14.
Nanostructured skutterudite-related compound Fe0.25Ni0.25Co0.5Sb3 was synthesized by a solvothermal method using FeCl3, NiCl2, CoCl2, and SbCl3 as the precursors and NaBH4 as the reductant. The solvothermally synthesized powders consisted of fine granules with an average particle size of tens of nanometers. The bulk material was prepared by hot pressing the powders. Transport property measurements indicated a heavily doped semiconductor behavior with n-type conduction. The thermal conductivity is about 1.83 W·m−1·K−1 at room temperature and decreases to 1.57 W·m−1·K−1 at 673 K. The low thermal conductivity is attributed to small grain size and high porosity. A maximum dimensionless figure of merit of 0.15 is obtained at 673 K.  相似文献   

15.
This paper reports the oxidation behavior of TiAl3/Al composite coating deposited by cold spray. The substrate alloy was orthorhombic-Ti-22Al-26Nb (at.%). The oxidation kinetics of the coating was tested at 650, 800, and 950 °C, respectively. The parabolic rate constant for the coating oxidized at 650 °C was k p = 7.2 × 10−2 mg·cm−2·h−1/2 for the tested 1200 h. For the coating oxidized at 800 °C, the oxidation kinetics could be separated into two stages with k p value of 39.8 × 10−2 mg·cm−2·h−1/2 for the initial 910 h and 17.7 × 10−2 mg·cm−2·h−1/2 for the stage thereafter. For the coating oxidized at 950 °C, the oxidation kinetics can be separated into three stages with k p of 136.9 × 10−2 mg·cm−2·h−1/2 in the first 100 h, followed by 26.9 × 10−2 mg·cm−2·h−1/2 from 100 to 310 h, and 11.8 × 10−2 mg·cm−2·h−1/2 from 310 to 1098 h. XRD, SEM, and EPMA were used to study the microstructure of the coating. The results indicated that the oxidation took place throughout the entire coating instead of only at the surface. The aluminum phase in the composite coating was soon oxidized to Al2O3 in all tested cases. The aluminum in TiAl3 phase was depleted gradually and oxidized to Al2O3 along with the degradation of TiAl3 to TiAl2 and TiAl as the temperature increased and time proceeded. AlTi2N was also a typical oxidation product at temperature higher than 800 °C. The experimental results also indicated that the protection of the coating was attributed greatly to the interlayer formed between the coating and the substrate.  相似文献   

16.
Olivine structured LiFePO4/C (lithium iron phosphate) and Mn2+-doped LiFe0. 98Mn0. 024/C powders were synthesized by the solid-state reaction. The effects of manganese partial substitution and different carbon content coating on the surface of LiFePO4 were considered. The structures and electrochemical properties of the samples were measured by X-ray diffraction (XRD), cyclic voltammetry (CV), charge/discharge tests at different current densities, and electrochemical impedance spectroscopy (EIS). The electrochemical properties of LiFePO4 cathodes with x wt. % carbon coating (x=3, 7, 11, 15) at γ=0. 2C, 2C (1C=170 mAh·g-1) between 2. 5 and 4. 3 V were investigated. The measured results mean that the LiFePO4 with 7 wt. % carbon coating shows the best rate performance. The discharge capacity of LiFe0. 98Mn0. 02PO4/C composite is found to be 165 mAh·g 1 at a discharge rate, γ=0. 2C, and 105 mAh·g-1 at γ=2C, respectively. After 10cycles, the discharge capacity has rarely fallen, while that of the pristine LiFePO4/C cathode is 150 mAh·g-1 and 98 mAh·g-1 at γ=0. 2 and 2C, respectively. Compared to the discharge capacities of both electrodes above, the evident improvement of the electrochemical performance is observed, which is ascribed to the enhancement of the electronic conductivity and diffusion kinetics by carbon coating and Mn2+-substitution.  相似文献   

17.
The Na2O-B2O3 system is thermodynamically optimized by means of the CALPHAD method. A two-sublattice ionic solution model, (Na+1)P(O−2,BO3 −3,B4O7 −2,B3O4.5)Q, has been used to describe the liquid phase. All the solid phases were treated as stoichiometric compounds. A set of thermodynamic parameters, which can reproduce most experimental data of both phase diagram and thermodynamic properties, was obtained. Comparisons between the calculated results and experimental data are presented.  相似文献   

18.
The dependence of the resistance ρ of the La0.7Ca0.3MnO3 single crystal on the temperature (in a range of 77 < T < 410 K) and magnetic field H is studied. The dependence of the magnetoresistance Δρ/ρ of the ferromagnetic phase on the field is shown to be determined by the competition of two mechanisms. In low magnetic fields, the magnetoresistance is positive Δρ/ρ > 0 and is determined by changes in the resistance with changing magnetization orientation with respect to the crystallographic axes; in high magnetic fields, the magnetoresistance is negative Δρ/ρ < 0, since it is the suppression of spin fluctuations in the magnetic field that plays the principal role. The phase transition from the ferromagnetic to paramagnetic state is a first-order transition close to the second-order one. In the transition range, the magnetoresistance is determined by the resistivity in the zero field ρ(T) and by the shift of the transition temperature T C(H) in the magnetic field. In the paramagnetic state, the resistivity ρ(T) has an activation character; similarly to the magnetoresistance of other lanthanum manganites, the magnetoresistance of this single crystal is controlled by a change in the activation energy in the magnetic field.  相似文献   

19.
The superconductivity of iron-based superconductor SmO 0.7 F 0.2 FeAs was investigated. The SmO 0.7 F 0.2 FeAs sample was prepared by the two-step solid-state reaction method. The onset resistivity transition temperature is as high as 56.5 K. X-ray diffraction (XRD) results show that the lattice parameters a and c are 0.39261 and 0.84751 nm, respectively. Furthermore, the global J c was more than 2.3 × 10 5 A/cm 2 at T = 10 K and H = 9 T, which was calculated by the formula of J c = 20ΔM/[a(1-a/(3b))]. The upper critical fields, H c2 ≈ 256 T (T = 0 K), was determined according to the Werthamer-Helfand-Hohenberg formula, indicating that the SmO 0.7 F 0.2 FeAs was a superconductor with a very promising application.  相似文献   

20.
Low-Co La1.8Ti0.2MgNi8.9Co0.1 alloys were prepared by magnetic levitation melting followed by annealing treatment. The effect of annealing on the hydrogen storage properties of the alloys was investigated systematically by X-ray diffraction (XRD), pressure-composition isotherm (PCI), and electrochemical measurements. The results show that all samples contain LaNi5 and LaMg2Ni9 phases. LaCo5 phase appears at 1,000 °C. The enthalpy change of all hydrides is close to ?30.6 kJ·mol?1 H2 of LaNi5 compound. Annealing not only increases hydrogen capacity and improves cycling stability but also decreases plateau pressure at 800 and 900 °C. After annealing, the contraction of cell volume and the increase of hydride stability cause the high rate dischargeability to reduce slightly. The optimum alloy is found to be one annealed at 900 °C, with its hydrogen capacity reaching up to 1.53 wt%, and discharge capacity remaining 225.1 mAh·g?1 after 140 charge–discharge cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号