首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The networked silica having pre-fabricated networks among silica particles is a new concept for the reinforcement of rubber compounds. The networked silica was designed to improve the fuel efficiency of tires while eliminating the disadvantages such as precure and ethanol production that arise in the conventional reinforcing system using coupling reagents. The networked silica was prepared using bis(triethoxysilylpropyl)tetrasulfide (TESPT) as a connecting chemical at various loading levels. The styrene–butadiene rubber (SBR) compounds reinforced with the networked silica exhibited low filler–filler interaction and high rubber–filler interaction due to the entanglements between the rubber molecules and the connecting chains of the networked silica. The increased physical interaction improved the elastic properties and wear resistance, while lowering the rolling resistance of the rubber compounds, resulting in long tire service life and high automobile fuel efficiency. The enhanced physical properties of the SBR compounds reinforced with the networked silica supported their promising potential as reinforcing fillers for tire manufacture. The networked silica can readily replace the conventional silica-reinforced system, without requiring major modification of the processing conditions.  相似文献   

2.
Thermoplastic elastomers (TPEs) were prepared from ternary blends of ethylene propylene diene poly methylene rubber (EPDM), isotactic polypropylene (PP), and low loadings (5–10 phr) of different types of interfacial phase modifiers (like maleated EPDM, styrene-ethylene-co-butylene-styrene block copolymer, and maleated PP). These showed much improved physico-mechanical properties compared to the binary blend of EPDM-PP. The effects of non-polar paraffin oil and polar di-octyl phthalate liquid additives (5–20 phr) were investigated in these phase-modified ternary and binary EPDM-PP blends. Only 5 phr of liquid additives provided synergistic improvement in physical properties (maximum stress, modulus, and elongation at break) and generated improved finer morphology of the ternary blends as revealed from scanning electron and atomic force microscopy studies. Enhanced physical properties and dynamic mechanical properties of these blends were explained with the help of better phase morphology and enhanced crystallinity of the blends.  相似文献   

3.
The effect of gamma-irradiation on the acrylonitrile butadiene/chlorosulphonated polyethylene rubber blends (NBR/CSM) based nanocomposites containing carbon black (CB) and silica filler (Si) were investigated by TG-DTG and ATR-FTIR techniques. The silica (with primary particle size of 22 nm) was added in content of 0, 10, 20 and 30 phr and carbon black (with primary particle size 40–48 nm) was added in content of 30 phr and rubber blend compounds were prepared. The obtained elastomeric materials were aging to different γ-irradiation doses (100, 200 and 400 kGy). The cure and mechanical properties of obtained nanocomposites were determined. Incorporating 20 phr of silica to the control NBR/CSM rubber blends containing 30 phr CB resulted 152% increase in tensile strength, 116%, in elongation at break and 142% modulus at 100% elongation, according to synergistic effect between the fillers. FTIR measurements of aged samples estimated the formation of alcohols, ethers and small amounts of lactones, anhydrides, esters and carboxylic acids after exposure to lower doses of γ-radiation (100 kGy). On the basis of the obtained spectra the formation of shorter polyene sequences and aromatic rings in aged elastomeric samples are assumed. The results show that 30 phr of carbon black (CB) and 20 phr of silica are needed for the best gamma aging resistance of NBR/CSM rubber nanocomposites. The result of radiation exposure is decrease in mechanical properties. The dose at which ultimate mechanical properties decreased was at 200 kGy. TG-DTG measurements estimated decrease in thermal stability of gamma-irradiated NBR/CSM rubber blend based nanocomposites. Silica reinforced NBR/CSM rubber blend had better radiation resistant than carbon black. Rough and heterogeneity of fracture surfaces has been observed for NBR/CSM rubber blends filled with silica. More uniform morphology of fracture surfaces according to high polymer–filler interaction and low filler–filler interaction has been observed for CB/Si filled NBR/CSM rubber blend.  相似文献   

4.
In this study, a novel rare-earth complex, dithio-aminomethyl-lysine samarium (DALSm), was prepared and then was employed as activator, accelerator, cross-linker and interfacial modifier to improve the mechanical properties of SBR/silica nanocomposites. The results showed that 6 phr DALSm performed a higher vulcanization efficiency than the combination of 5 phr activator zinc oxide (ZnO), 2 phr stearic acid (SA), and 2 phr accelerator diethyl dithiocarbamate zinc (EDCZn). Meanwhile, the XPS and FTIR analysis of DALSm/silica model compounds confirmed that hydrogen bonds and coordination bonds could be formed between DALSm and silica during vulcanization process, which can effectively facilitate the homogenous dispersion of silica particles into SBR matrix and enhance the interface adhesion between rubber matrix and filler. As a consequent, the mechanical properties of SBR/DALSm/silica nanocomposites were substantially improved and much more excellent than those of the SBR/EDCZn/silica nanocomposites containing equivalent filler content. Based on the results of immobilized polymer layer, the reinforcing mechanism of DALSm in SBR/silica nanocomposites was analyzed.  相似文献   

5.
Different weight fractions of aluminum (Al) powder viz., 10, 20, 30, 40, 50, 60 and 70 phr were incorporated into styrene butadiene rubber (SBR) matrix. The Al powder filled and vulcanized SBR composites have been characterized for mechanical properties such as tensile strength, tensile modulus and surface hardness. A drastical improvement in tensile strength and tensile modulus with increase in filler content of the composites was noticed. The electrical properties such as dielectric constant, tan delta and dielectric loss were measured for all the four compositions. The effect of volume fraction (0–70 phr) of conducting filler, frequency (100 kHz–30 MHz), temperature (25–75°C) and relative humidity on dielectric constant, dielectric loss and tan delta values of the composites were studied.  相似文献   

6.
The article describes the effect of hydrocarbon (HC) and coumarone-indene (CI) resin tackifiers on autohesion behavior of ethylene propylene diene polymethylene (EPDM) rubber. The viscoelastic behavior and nature of compatibility of EPDM/tackifier blends were studied by means of dynamic mechanical analysis. Furthermore, scanning electron microscopy and atomic force microscopy were used to understand the compatibility of the EPDM/tackifier blends. The HC tackifying resin modified the viscoelastic properties of the EPDM rubber in such a way that it behaved as a plasticizer at lower frequency by reducing the storage modulus and filler at higher frequency by increasing the storage modulus. On the contrary, the CI modified EPDM rubber did not show similar behavior; the modulus enhanced throughout the entire frequency range. The viscosity of the matrix was found to be highly governed by the compatibility as well as amount of tackifier present in the blend. In order to explain the tack behavior, several tack governing factors such as green strength, creep compliance, entanglement molecular weight, relaxation time, self-diffusion coefficient, and monomer friction coefficient (ζ0) were investigated. The tack strength increased with HC tackifier loading up to 24 parts per hundred grams of rubber (phr), beyond which a plateau region was observed. A maximum of 196% improvement was observed at 24 phr HC loaded sample as compared to gum EPDM rubber devoid of tackifier. Conversely, there was a marginal improvement of tack strength (36%) up to 8 phr loading for the system containing CI, beyond which it dropped.  相似文献   

7.
The aim of the present work is to study the mechanical properties of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends based polymer electrolytes for lithium ion batteries. The introduction of PVC into PMMA is found to increase the Young’s modulus value from 5.19 MPa (in pure PMMA) to 6.05 MPa (in PVC:PMMA = 70:30). The different Young’s modulus values in PVC blends is due to the difference in the cross-linking density provided by PVC with different weight fraction values. The stress–strain analysis reveals that the mechanical strength of the polymer electrolyte system deteriorated with the incorporation of LiCF3SO3. The results show that the introduction of salt decreases the Young’s modulus and stress at peak values along with higher elongation at peak value. The addition of low molecular weight plasticizers to PVC–PMMA–LiCF3SO3 decreases the modulus and stress at peak of the complexes. To be applicable in practical applications, the mechanical strength of the plasticized films is found to improve with the addition of silica as nanocomposite filler.  相似文献   

8.
In this work the rheological, physico-mechanical, thermal and morphology studies were performed on a blend of EPDM/SBR (ethylene propylene diene monomer/styrene butadiene rubber) (50/50) loaded with a new prepared core–shell pigment based on a core of zinc oxide which presents the major component of the prepared pigment (≈90%) covered with a shell of phosphate, this shell comprises only about (≈10%). The new pigments were added in different concentration to the rubber blend and were compared to blends pigmented with commercial zinc oxide and zinc phosphate. The results showed that the new pigments exhibited better rheometric, and physico-mechanical properties. In addition, these prepared pigments showed decrease of equilibrium swelling in toluene solvent and increase in crosslink density for EPDM/SBR blend. The efficiency of prepared core–shell pigments were also evaluated by studying the surface morphology (SEM) and thermal properties TGA (thermal gravimetric analysis). The prepared pigments loading of 10 phr (parts per hundred parts of rubber) showed the optimum properties of EPDM/SBR blend than rubber loaded with higher concentration of the commercial pigments, which indicated that the new core–shell pigment is more economic with better performance than commercial zinc oxide and phosphates individually.  相似文献   

9.
Ethylene propylene diene rubber (EPDM) is a well-known versatile polymer, which is frequently used in the production of rubber goods based on conventional and specialty polymers. The present paper investigates the role of recycled natural rubber prophylactic waste compared to virgin natural rubber in the development of novel ethylene propylene diene rubber composites. The processing characteristics have been evaluated using a Monsanto rheometer at three different temperatures 150, 160 and 170°C. The cure curves of EPDM compounds have been found to be the resultant of slow curing or marching cure curve of EPDM and that of fast curing S shaped cure curve of natural rubber. The curing properties such as optimum cure time, scorch time and induction time have been found to be decreasing with the loading of prophylactic filler. For most of the cases, the values obtained for compositions with virgin natural rubber (ISNR-5) have been found to be lower than that with prophylactic filler.The cure activating nature of the prophylactic waste in EPDM is higher at higher temperatures. The unaged tensile strength has been increased with the loading of prophylactic filler up to 30 phr. The aged tensile strength and unaged/aged elongation at break have been found to be a maximum at 20 phr prophylactic filler loading. The tear strength has been found to be a maximum at 40 phr. Better performance has been noted in the case of virgin natural rubber filled samples for unaged/aged tensile strength, elongation break and tear strength except at 40 phr loading. The diffusion process in EPDM vulcanizates is found to be anomalous. Crosslink density values determined using Mooney-Rivlin equation agree with the tensile strength values for most of the cases. An increase in the crosslink density has been noted with the thermal aging of the samples.  相似文献   

10.
In the present study, rice husks filled styrene butadiene rubber (SBR)/linear low density polyethylene (LLDPE) 50/50 blends with a compatibilizer, maleic anhydride (MAH) were prepared using a brabender plasti-corder. Virgin SBR/LLDPE blend was also prepared. The physico-mechanical as well as dielectric properties were investigated. Increasing MAH concentrations in SBR/LLDPE blends resulted in an increase in the tensile strength, elongation at break and hardness. After a certain concentration (2.5 phr), a reduction in these properties was found. On the other hand an increase in the dielectric properties as well as in the mass swell in both toluene and oil with MAH was noticed. After certain concentration of rice husk filler (25 phr) an abrupt increase in permittivity ε′ and dielectric loss ε″ was obtained. These results are supported by the mechanical properties measurements. The scanning electron microscopy (SEM) indicates that the presence of MAH increases the interfacial interaction between SBR/LLDPE blends on one hand and also rice husk filler and the blend on the other hand.  相似文献   

11.
This paper focuses on the use of styrene butadiene rubber (SBR) as a viscosity modifier in novel blends of natural rubber (NR) and dichlorocarbene modified styrene butadiene rubber (DCSBR). The processing characteristics, vulcanisation kinetics, stress-strain behaviour, mechanical properties and low temperature transition of the blends have been examined in order to analyse the influence of SBR in the blends. The change in cross-link density values from stress strain behaviour and equilibrium swelling data has been correlated with the technological properties of the blends. The excellent mechanical properties and the increased cross-link density in blends in the presence of 5—10 phr of styrene butadiene rubber reveals the viscosity modifying action of SBR in NR/DCSBR blends. The variation in viscosities of these blends with the addition of SBR is reflected in the DSC thermograms. The resulting blends show very high resistance to thermal ageing as compared to those without SBR.  相似文献   

12.
Dynamic vulcanizate blends of polypropylene (PP) and ethylene–propylene-diene rubber (EPDM) were filled with 5 wt% of micro-scale ceramic powder. To overcome the difficulty of particles dispersion and adhesion, the filler was modified through grafting using three kinds of organic molecules. A combination of Raman data with thermogravimetric analysis (TGA) results prove that grafting of organic macromolecules onto ceramic surfaces takes place. Dynamic mechanical analysis (DMA) has been performed from −100 to +50 °C; addition of the ceramic increases the storage modulus E′, more so for modified filler. Compared to PP and thermoplastic vulcanizate (TPV), a higher thermal expansion is seen after addition of the ceramic filler, a result of creation of more free volume. The tensile modulus of the composites is about 1.2 times that of pure TPV, an increase in the rigidity clearly caused by the ceramic. Fracture surfaces show weak bonding of filler particles to the matrix. In the sample containing modified filler the tensile deformation is going through the polymer matrix. The brittleness, B, decreases upon surface modification of the ceramic. The highest value of B is seen for the PP + unmodified ceramic while lower B values are obtained for TPV and its composites.  相似文献   

13.
The effects of electron beam (EB) irradiation on the thermal properties, fatigue life and natural weathering of styrene butadiene rubber/recycled acrylonitrile–butadiene rubber (SBR/NBRr) blends were investigated. The SBR/NBRr blends were prepared at 95/5, 85/15, 75/25, 65/35, or 50/50 blend ratios with and without the presence of a 3 part per hundred rubber (phr) of polyfunctional monomer, trimethylolpropane triacrylate (TMPTA). Results indicate that the crystallisation temperature (Tc) observed in polymeric blends is due to the alignment of polymer chains forming a semi-crystalline phase. Addition of TMPTA helps to align polymer chains through crosslinking. More crosslinking occurred between polymer blends with the help of TMPTA, upon irradiation. The improvement in fatigue life can also be associated with the stabilisation of SBR/NBRr blends upon irradiation and irradiation-induced crosslinking, which was accomplished with relatively low radiation-induced oxidative degradation in the presence of TMPTA. The tensile properties of both blends decreased over the periods of environmental exposure due to the effect of polymer degradation. After 6 months, the irradiated SBR/NBRr blends could not retain better retention [mainly with 25, 35 or 50 phr of recycled acrylonitrile–butadiene rubber (NBRr) particles] due to the samples becoming brittle over the long period of outdoor exposure.  相似文献   

14.
A series of styrene–butadiene rubber (SBR) composites have been prepared with different weight ratios of polyacetylene based conducting carbon black (CCB) (0–90 phr). The SBR–CCB systems are characterized for dimensional stability which is enhanced by increasing the CCB loading because of enhancement in polymer-filler interaction. The electrical properties such as dielectric constant (εr), dissipation factor (tan δ) and dielectric loss (ε″) of the composites have been studied. The influence of different loading of CCB (0–90 phr), frequency of ac (100 Hz–30 MHz) and temperature (25–75 °C) on the electrical properties was studied. An increase in dielectric constant and tan δ of the SBR composites was observed with increase in CCB content and ac frequency. This is due to enhancement of filler–filler interaction and the increase in continuity of conducting phase. The surface morphology has been studied using scanning electron microscopy (SEM).  相似文献   

15.
研究了生胶品种、硫化体系、填充体系和加工助剂等因素对三元乙丙橡胶耐磨性能的影响。实验结果表明:胶种选用高乙烯含量,高门尼粘度的非充油型乙丙橡胶,硫化体系采用硫磺/硫载体并用的有效硫磺硫化体系,填充体系采用高结构炭黑N220以及Si-69改性过的气相法白炭黑AS-200并用体系,同时配合0.5份左右的爽滑粉,都能有效提高EPDM胶料的耐磨性能。  相似文献   

16.
The rolling friction and wear of ethylene/propylene/diene (EPDM) and styrene/butadiene rubbers (SBR) with different carbon black (CB) contents were studied against steel in orbital rolling ball (steel)-on-plate (rubber) test rig (Orbital-RBOP) and oscillating rolling ball (steel)-on-plate (rubber) set-up (Oscillating-RBOP). The universal hardness (H), coefficient of friction (COF), and specific wear rate (W s) of EPDM and SBR were determined. Incorporation of CB increases the universal hardness and the COF (the latter marginally) and decreases the specific wear rate for both EPDM and SBR. The wear mechanisms were concluded by inspecting the worn surfaces in scanning electron microscope and discussed as a function of CB modification. An inverse relationship between the specific wear rate and universal hardness was proposed in form of W s = kH n , where k and n are constants for a given rubber and testing condition.  相似文献   

17.
采用4种不同种类的白炭黑粒子(A200,H2000,R812S,T36-5)分别作为三元乙丙橡胶(EPDM)的增强填料,并通过超临界CO2发泡法制备具有微孔结构的EPDM泡沫材料。通过扫描电子显微镜和橡胶加工分析仪对不同白炭黑/EPDM基体的黏弹性、硫化性能及泡孔结构等进行测试和表征。结果表明:以气相法白炭黑(A200,H2000,R812S)作为增强填料的EPDM基体流变性能好,利于形成泡孔结构,且泡孔密度随交联度的提高而增加。而以沉淀法白炭黑T36-5作为增强填料的EPDM基体的模量和黏度过高,只在较窄的预硫化区间内形成泡孔结构。其中以白炭黑A200作为增强填料的EPDM基体在不损失良好流变性能的前提下仍能够获得较高的交联度,且A200能够提供更好的异相成核作用,明显提高泡孔密度,减小泡孔尺寸。  相似文献   

18.
为提高硅橡胶的耐高温性能,确定最佳的实验配方,以乙烯基硅橡胶为基础胶,八氢基笼型倍半硅氧烷(T_8H_8)为交联剂,白炭黑为补强填料,纳米级氧化锡为耐热填料,制备出一种耐高温硅橡胶.该配方中T_8H_8为自行合成的耐高温硅橡胶交联剂,通过红外光谱(FTIR)、X射线衍射(XRD)、核磁共振氢谱(1HNMR)对T_8H_8结构进行表征,探究了不同配方对硅橡胶耐热性能的影响.结果表明,当乙烯基硅油用量为100 phr,T_8H_8中Si—H与乙烯基硅橡胶中Si—Vi的摩尔比为4∶1,白炭黑添加量为15 phr,氧化锡添加量为8 phr时,硅橡胶的初始分解温度达到489.77℃,拉伸强度为4.06 MPa,剪切强度1.69 MPa.  相似文献   

19.
The effect of conductive carbon black (CCB) on the physico-mechanical, thermal, and electrical properties have been investigated by various characterization techniques. Physico-mechanical properties of the vulcanizates were studied with variation of filler loading, which revealed that the tensile strength increased up to 20 phr (parts per hundred rubber) CCB loading, whereas at higher filler loading it decreased marginally. Furthermore, tensile modulus, tear strength, and hardness gradually increased with increase in filler loading. The compression set and abrasion loss decreased with increasing CCB loading. The bound rubber content (Bdr) of unvulcanized rubber was found to increase significantly with increasing CCB content. The crosslink density increased, whereas the swelling decreased with CCB loading. The thermal stability of the vulcanizates evaluated by thermogravimetric analysis (TGA) showed a minor increment with increase in CCB content. It is observed from the dynamic mechanical thermal analysis (DMTA) that the storage modulus (E′), loss modulus (E″), and glass transition temperature (T g) of ethylene acrylic elastomer (AEM) matrix increased by incorporation of CCB. The dielectric relaxation characteristics of AEM vulcanizates such as dielectric permittivity (ε′), electrical conductivity (σ ac), and electric moduli (M′ and M″) have been studied as a function of frequency (101 to 106 Hz) at different filler loading. The variation of ε′ with frequency and filler loading was explained based on the interfacial polarization of the fillers within a heterogeneous system. The ε′ increased with increasing the CCB loading and it decreased with applied frequency. The frequency dependency of σ ac was investigated using conduction path theory and percolation threshold limit. The σ ac increased with increase in both CCB concentration and applied frequency. The M′ increased with applied frequency, however, it decreased above 30 phr filler. The M″ peak shifted towards higher frequency region and above 20 phr filler loading the peaks were not observed within the tested frequency region. The electromagnetic interference shielding effectiveness (EMISE) was studied in the X-band frequency region (8–12 GHz), which significantly improved with increase in CCB loading.  相似文献   

20.
This communication demonstrates, an approach of compatibilization between polychloroprene (CR) and ethylene propylene diene monomer rubber (EPDM) by using nanoclay as a compatibilizer and, simultaneously, as a very strong reinforcing nano-filler. With the incorporation of less than 9 wt.% nanoclay, the dynamic storage modulus above the glass transition region of such a blend increases from ∼2 MPa to ∼54 MPa. This tremendous reinforcing as well as the compatibilization effect of the nanoclay was understood by thermodynamically driven preferential framework-like accumulation of exfoliated nanoclay platelets in the phase border of CR and EPDM, as observed i.e. from transmission electron microscopy. The extra-ordinary improvement of dynamic modulus can also be understood by a very strong filler-filler networking that we observed in strain sweep experiments. Moreover, we found that the compatibilized blends exhibit an extra dynamic-mechanical relaxation process at higher temperatures (∼Tg + 130 K). The suggested method for compatibilization of incompatible rubber blends offers routes to the design of new rubber based technical products for diversified applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号