首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we define a class of graphs which are referred to as (3, 1) graphs. A graph is a member of this class if it has the property that within each set of three vertices, there is at least one edge. We derive a lower bound for the size of a maximum clique in a (3, 1) graph as well as an upper bound for the size of a minimum clique covering. In addition, we show that there exists a linear algorithm for constructing a Hamiltonian circuit in a connected (3, 1) graph and an n4-algorithm for finding a minimum coloring in a (3, 1) graph.  相似文献   

2.
Structural and behavioral parameters of many real networks such as social networks are unpredictable, uncertain, and have time-varying parameters, and for these reasons, deterministic graphs for modeling such networks are too restrictive to solve most of the real-network problems. It seems that stochastic graphs, in which weights associated to the vertices are random variables, might be better graph models for real-world networks. Once we use a stochastic graph as the model for a network, every feature of the graph such as path, spanning tree, clique, dominating set, and cover set should be treated as a stochastic feature. For example, choosing a stochastic graph as a graph model of an online social network and defining community structure in terms of clique, the concept of a stochastic clique may be used to study community structures’ properties or define spreading of influence according to the coverage of influential users; the concept of stochastic vertex covering may be used to study spread of influence. In this article, minimum vertex covering in stochastic graphs is first defined, and then four learning, automata-based algorithms are proposed for solving a minimum vertex-covering problem in stochastic graphs where the probability distribution functions of the weights associated with the vertices of the graph are unknown. It is shown that through a proper choice of the parameters of the proposed algorithms, one can make the probability of finding minimum vertex cover in a stochastic graph as close to unity as possible. Experimental results on synthetic stochastic graphs reveal that at a certain confidence level the proposed algorithms significantly outperform the standard sampling method in terms of the number of samples needed to be taken from the vertices of the stochastic graph.  相似文献   

3.
Covering problems are fundamental classical problems in optimization, computer science and complexity theory. Typically an input to these problems is a family of sets over a finite universe and the goal is to cover the elements of the universe with as few sets of the family as possible. The variations of covering problems include well-known problems like Set Cover, Vertex Cover, Dominating Set and Facility Location to name a few. Recently there has been a lot of study on partial covering problems, a natural generalization of covering problems. Here, the goal is not to cover all the elements but to cover the specified number of elements with the minimum number of sets. In this paper we study partial covering problems in graphs in the realm of parameterized complexity. Classical (non-partial) version of all these problems has been intensively studied in planar graphs and in graphs excluding a fixed graph H as a minor. However, the techniques developed for parameterized version of non-partial covering problems cannot be applied directly to their partial counterparts. The approach we use, to show that various partial covering problems are fixed parameter tractable on planar graphs, graphs of bounded local treewidth and graph excluding some graph as a minor, is quite different from previously known techniques. The main idea behind our approach is the concept of implicit branching. We find implicit branching technique to be interesting on its own and believe that it can be used for some other problems.  相似文献   

4.
针对大多数现有无线传感器网络(Wireless Sensor Network, WSN)目标覆盖方案没有考虑传感器功率(传感范围)可调的问题,提出一种基于学习自动机(Learning Automata, LA)和节点功率自适应调整的WSN的目标覆盖方案。利用LA算法根据节点能量自适应调整节点的发射功率,构建能够覆盖所有目标的覆盖集,并通过精简过程获得最小覆盖集,从而减低节点的能耗,提高网络的生命周期。通过实验研究了传感器数量和目标数量对网络寿命的影响,并将该方案与基于贪婪算法、遗传算法的方案进行比较,结果表明,该方案能够获得更多的覆盖集和更长的网络寿命。  相似文献   

5.
We study the approximability of instances of the minimum entropy set cover problem, parameterized by the average frequency of a random element in the covering sets. We analyze an algorithm combining a greedy approach with another one biased towards large sets. The algorithm is controlled by the percentage of elements to which we apply the biased approach. The optimal parameter choice leads to improved approximation guarantees when average element frequency is less than e.  相似文献   

6.
Tight Results on Minimum Entropy Set Cover   总被引:1,自引:0,他引:1  
In the minimum entropy set cover problem, one is given a collection of k sets which collectively cover an n-element ground set. A feasible solution of the problem is a partition of the ground set into parts such that each part is included in some of the k given sets. Such a partition defines a probability distribution, obtained by dividing each part size by n. The goal is to find a feasible solution minimizing the (binary) entropy of the corresponding distribution. Halperin and Karp have recently proved that the greedy algorithm always returns a solution whose cost is at most the optimum plus a constant. We improve their result by showing that the greedy algorithm approximates the minimum entropy set cover problem within an additive error of 1 nat =log 2 e bits ≃1.4427 bits. Moreover, inspired by recent work by Feige, Lovász and Tetali on the minimum sum set cover problem, we prove that no polynomial-time algorithm can achieve a better constant, unless P = NP. We also discuss some consequences for the related minimum entropy coloring problem. G. Joret is a Research Fellow of the Fonds National de la Recherche Scientifique (FNRS).  相似文献   

7.
本文利用图论模型的转化,改进传统贪心算法,设计了一种新的求解高校排考问题的图算法.改进后的算法可以更好应对在现实学分制环境下,跨年级、跨专业、主辅修等复杂的选课因素.为了解决传统算法中仅靠人工优化来实现的软约束目标,改进后的图算法首先将排考图着色模型,转化为无向赋权图的分团覆盖模型,通过深度优先策略和赋权机制,求解同时满足排考硬约束条件和软约束条件的排考方案.经过数据验证,改进算法的排考效果,在排考效果上优于传统贪心算法,在时间效率上优于人工排考方式.改进后的新算法在近年我校的期末考务工作中发挥了一定作用.  相似文献   

8.
Given an undirected, vertex-weighted graph, the goal of the minimum weight vertex cover problem is to find a subset of the vertices of the graph such that the subset is a vertex cover and the sum of the weights of its vertices is minimal. This problem is known to be NP-hard and no efficient algorithm is known to solve it to optimality. Therefore, most existing techniques are based on heuristics for providing approximate solutions in a reasonable computation time.Population-based search approaches have shown to be effective for solving a multitude of combinatorial optimization problems. Their advantage can be identified as their ability to find areas of the space containing high quality solutions. This paper proposes a simple and efficient population-based iterated greedy algorithm for tackling the minimum weight vertex cover problem. At each iteration, a population of solutions is established and refined using a fast randomized iterated greedy heuristic based on successive phases of destruction and reconstruction. An extensive experimental evaluation on a commonly used set of benchmark instances shows that our algorithm outperforms current state-of-the-art approaches.  相似文献   

9.
Maximal clique enumeration is a fundamental problem in graph theory and has been extensively studied. However, maximal clique enumeration is time-consuming in large graphs and always returns enormous cliques with large overlaps. Motivated by this, in this paper, we study the diversified top-k clique search problem which is to find top-k cliques that can cover most number of nodes in the graph. Diversified top-k clique search can be widely used in a lot of applications including community search, motif discovery, and anomaly detection in large graphs. A naive solution for diversified top-k clique search is to keep all maximal cliques in memory and then find k of them that cover most nodes in the graph by using the approximate greedy max k-cover algorithm. However, such a solution is impractical when the graph is large. In this paper, instead of keeping all maximal cliques in memory, we devise an algorithm to maintain k candidates in the process of maximal clique enumeration. Our algorithm has limited memory footprint and can achieve a guaranteed approximation ratio. We also introduce a novel light-weight \(\mathsf {PNP}\)-\(\mathsf {Index}\), based on which we design an optimal maximal clique maintenance algorithm. We further explore three optimization strategies to avoid enumerating all maximal cliques and thus largely reduce the computational cost. Besides, for the massive input graph, we develop an I/O efficient algorithm to tackle the problem when the input graph cannot fit in main memory. We conduct extensive performance studies on real graphs and synthetic graphs. One of the real graphs contains 1.02 billion edges. The results demonstrate the high efficiency and effectiveness of our approach.  相似文献   

10.
An efficient distributed algorithm for constructing small dominating sets   总被引:1,自引:0,他引:1  
The dominating set problem asks for a small subset D of nodes in a graph such that every node is either in D or adjacent to a node in D. This problem arises in a number of distributed network applications, where it is important to locate a small number of centers in the network such that every node is nearby at least one center. Finding a dominating set of minimum size is NP-complete, and the best known approximation is logarithmic in the maximum degree of the graph and is provided by the same simple greedy approach that gives the well-known logarithmic approximation result for the closely related set cover problem. We describe and analyze new randomized distributed algorithms for the dominating set problem that run in polylogarithmic time, independent of the diameter of the network, and that return a dominating set of size within a logarithmic factor from optimal, with high probability. In particular, our best algorithm runs in rounds with high probability, where n is the number of nodes, is one plus the maximum degree of any node, and each round involves a constant number of message exchanges among any two neighbors; the size of the dominating set obtained is within of the optimal in expectation and within of the optimal with high probability. We also describe generalizations to the weighted case and the case of multiple covering requirements. Received: January 2002 / Accepted: August 2002 RID="*" ID="*" Supported by NSF CAREER award NSF CCR-9983901 RID="*" ID="*" Supported by NSF CAREER award NSF CCR-9983901  相似文献   

11.
《国际计算机数学杂志》2012,89(10):2118-2141
A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced.  相似文献   

12.
Approximating minimum cocolorings   总被引:1,自引:0,他引:1  
A cocoloring of a graph G is a partition of the vertex set of G such that each set of the partition is either a clique or an independent set in G. Some special cases of the minimum cocoloring problem are of particular interest.We provide polynomial-time algorithms to approximate a minimum cocoloring on graphs, partially ordered sets and sequences. In particular, we obtain an efficient algorithm to approximate within a factor of 1.71 a minimum partition of a partially ordered set into chains and antichains, and a minimum partition of a sequence into increasing and decreasing subsequences.  相似文献   

13.
Iterated greedy algorithms belong to the class of stochastic local search methods. They are based on the simple and effective principle of generating a sequence of solutions by iterating over a constructive greedy heuristic using destruction and construction phases. This paper, first, presents an efficient randomized iterated greedy approach for the minimum weight dominating set problem, where—given a vertex-weighted graph—the goal is to identify a subset of the graphs’ vertices with minimum total weight such that each vertex of the graph is either in the subset or has a neighbor in the subset. Our proposed approach works on a population of solutions rather than on a single one. Moreover, it is based on a fast randomized construction procedure making use of two different greedy heuristics. Secondly, we present a hybrid algorithmic model in which the proposed iterated greedy algorithm is combined with the mathematical programming solver CPLEX. In particular, we improve the best solution provided by the iterated greedy algorithm with the solution polishing feature of CPLEX. The simulation results obtained on a widely used set of benchmark instances shows that our proposed algorithms outperform current state-of-the-art approaches.  相似文献   

14.
考虑网络节点的流守恒特性,网络流量的有效监测问题可抽象为求给定图G(V,E)的最小弱顶点覆盖集的问题和基于流划分的最小弱顶点覆盖集的问题,这是NP难的问题.首先分析了弱顶点覆盖集的约束关系,并给出了问题的整数规划形式.然后利用原始对偶方法构造了求解最小弱顶点覆盖集的近似算法,并分析了算法的比界为2.进一步分析了求解基于最大流划分的最小弱顶点覆盖集的近似算法.  相似文献   

15.
In this paper, we introduce carousel greedy, an enhanced greedy algorithm which seeks to overcome the traditional weaknesses of greedy approaches. We have applied carousel greedy to a variety of well-known problems in combinatorial optimization such as the minimum label spanning tree problem, the minimum vertex cover problem, the maximum independent set problem, and the minimum weight vertex cover problem. In all cases, the results are very promising. Since carousel greedy is very fast, it can be used to solve very large problems. In addition, it can be combined with other approaches to create a powerful, new metaheuristic. Our goal in this paper is to motivate and explain the new approach and present extensive computational results.  相似文献   

16.
Franco等给出一个基于平均度数的最小3-击中集问题的贪心算法,并给出算法返回击中集规模的上界.首先将其算法推广成为求解最小k-击中集问题的贪心算法HGREEDY1(A,C),并类似地给出算法返回击中集规模的上界;然后给出基于最大度数的贪心算法HGREEDY2(A,C),并证明算法HGREEDY2(A,C)在给定条件下返回的击中集规模上界优于算法HGREEDY1(A,C);另外设计了用于求解最小k-击中集的随机算法RH(A,C),并对其性能进行平均分析;在此基础上设计一个求解最小k-击中集的随机近似算法并讨论其性质.  相似文献   

17.
超图是普通图的泛化表示, 在许多应用领域都很常见, 包括互联网、生物信息学和社交网络等. 独立集问题是图分析领域的一个基础性研究问题, 传统的独立集算法大多都是针对普通图数据, 如何在超图数据上实现高效的最大独立集挖掘是一个亟待解决的问题. 针对这一问题, 提出一种超图独立集的定义. 首先分析超图独立集搜索的两个特性, 然后提出一种基于贪心策略的基础算法. 接着提出一种超图近似最大独立集搜索的剪枝框架即精确剪枝与近似剪枝相结合, 以精确剪枝策略缩小图的规模, 以近似剪枝策略加快搜索速度. 此外, 还提出4种高效的剪枝策略, 并对每种剪枝策略进行理论证明. 最后, 通过在10个真实超图数据集上进行实验, 结果表明剪枝算法可以高效地搜索到更接近于真实结果的超图最大独立集.  相似文献   

18.
First, we study geometric variants of the standard set cover motivated by assignment of directional antenna and shipping with deadlines, providing the first known polynomial-time exact solutions. Next, we consider the following general (non-necessarily geometric) capacitated set cover problem. There is given a set of elements with real weights and a family of sets of the elements. One can use a set if it is a subset of one of the sets in the family and the sum of the weights of its elements is at most one. The goal is to cover all the elements with the allowed sets. We show that any polynomial-time algorithm that approximates the uncapacitated version of the set cover problem with ratio r can be converted to an approximation algorithm for the capacitated version with ratio r+1.357. In particular, the composition of these two results yields a polynomial-time approximation algorithm for the problem of covering a set of customers represented by a weighted n-point set with a minimum number of antennas of variable angular range and fixed capacity with ratio?2.357. This substantially improves on the best known approximation ratio for the latter antenna problem equal to?3. Furthermore, we provide a PTAS for the dual problem where the number of sets (e.g., antennas) to use is fixed and the task is to minimize the maximum set load, in case the sets correspond to line intervals or arcs. Finally, we discuss the approximability of the generalization of the antenna problem to include several base stations for antennas, and in particular show its APX-hardness already in the uncapacitated case.  相似文献   

19.
A new method for calculating fractal dimension is developed in this paper. The method is based on the box dimension concept; however, it involves direct estimation of a suboptimal covering of the data set of interest. By finding a suboptimal cover, this method is better able to estimate the required number of covering elements for a given cover size than is the standard box counting algorithm. Moreover, any decrease in the error of the covering element count directly increases the accuracy of the fractal dimension estimation. In general, our method represents a mathematical dual to the standard box counting algorithm by not solving for the number of boxes used to cover a data set given the size of the box. Instead, the method chooses the number of covering elements and then proceeds to find the placement of smallest hyperellipsoids that fully covers the data set. This method involves a variant of the Fuzzy-C Means clustering algorithm, as well as the use of the Minimum Cluster Volume clustering algorithm. A variety of fractal dimension estimators using this suboptimal covering method are discussed. Finally, these methods are compared to the standard box counting algorithm and wavelet-decomposition methods for calculating fractal dimension by using one-dimensional cantor dust sets and a set of standard Brownian random fractal images.  相似文献   

20.
A flaw in the greedy approximation algorithm proposed by Zhang et al. (2009) [1] for the minimum connected set cover problem is corrected, and a stronger result on the approximation ratio of the modified greedy algorithm is established. The results are now consistent with the existing results on the connected dominating set problem which is a special case of the minimum connected set cover problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号