首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Camel milk was processed into cheese using Camifloc and calcium chloride. Two types of cheeses were produced from camel milk, using Camifloc (CF cheese) and CaCl2 in addition to Camifloc (CFCC cheese). The study revealed the usefulness of Camifloc in coagulation of camel milk. The time of coagulation was found to be about 2–3 h, and the yield of CFCC cheese was found to be higher than the CF cheese, while a shelf life of 4 days was obtained for both cheeses. Both cheeses showed nonsignificant variations in compositional content except for the percentages of protein and ash, which showed significant differences at P < 0.001 and P < 0.05. Sensory evaluation by taste panellists was conducted to determine the acceptability of cheeses during the storage periods. Differences were found between the CF cheese and the CFCC cheese in saltiness and overall acceptability, and higher mean scores were recorded for the CF cheese than the CFCC cheese. The study recommends the use of Camifloc in making cheese from camel milk; and if CaCl2 is added, it can improve the cheese yield. However, we suggest that the rate of salting should be reduced, and further drying and storage of the cheese should be done.  相似文献   

2.
3.
This study describes the changes that occur during the ripening of cheeses made with a plant coagulant derived from artichoke flowers (Cynara scolymus). The results indicate that the physicochemical composition during ripening evolves similarly to other cheeses. The texture and sensory features of the cheeses during ripening evolved differently from that observed for other goat cheeses. Although it is common for a bitter taste to develop during the ripening of cheeses elaborated with plant coagulants, bitterness was scored very low in the cheeses made with artichoke, so that these cheeses could be suitable for marketing.  相似文献   

4.
Theoretical cheese yield can be estimated from the milk fat and casein or protein content of milk using classical formulae, such as the VanSlyke formula. These equations are reliable predictors of theoretical or actual yield based on accurately measured milk fat and casein content. Many cheese makers desire to base payment for milk to dairy farmers on the yield of cheese. In small factories, however, accurate measurement of fat and casein content of milk by either chemical methods or infrared milk analysis is too time consuming and expensive. Therefore, an empirical test to predict cheese yield was developed which uses simple equipment (i.e., clinical centrifuge, analytical balance, and forced air oven) to carry out a miniature cheese making, followed by a gravimetric measurement of dry weight yield. A linear regression of calculated theoretical versus dry weight yields for milks of known fat and casein content was calculated. A regression equation of y = 1.275x + 1.528, where y is theoretical yield and x is measured dry solids yield (r2 = 0.981), for Cheddar cheese was developed using milks with a range of theoretical yield from 7 to 11.8%. The standard deviation of the difference (SDD) between theoretical cheese yield and dry solids yield was 0.194 and the coefficient of variation (SDD/mean x 100) was 1.95% upon cross validation. For cheeses without a well-established theoretical cheese yield equation, the measured dry weight yields could be directly correlated to the observed yields in the factory; this would more accurately reflect the expected yield performance. Payments for milk based on these measurements would more accurately reflect quality and composition of the milk and the actual average recovery of fat and casein achieved under practical cheese making conditions.  相似文献   

5.
Minas Frescal cheeses produced with the addition of the probiotic culture Bifidobacterium Bb‐12 and without (C1) or with (C2) lactic acid were evaluated in relation to the microbiological, physicochemical and sensory properties. After 28 days of storage, the cheeses without lactic acid showed lower moisture and pH, in addition to higher acidity and syneresis. This behaviour influenced the texture profile of the cheeses, making them harder and chewier. The colour attributes L* and b* diminished during the storage. The majority of the consumers classified the cheeses as having good acceptability and they would buy this type of functional food.  相似文献   

6.
Standardised cow's milk (fat 3 g/100 g) was used to manufacture Feta cheese fortified with 40, 60 and 80 mg of iron/kg cheese using ferrous sulphate (FeSO4), ferric chloride (FeCl3), ferric pyrophosphate (Fe4 (P2O7)3) and microencapsulated ferrous sulphate. Chemical composition and sensory characteristics of fortified cheeses were determined after 60 days of ripening, during which the iron content and thiobarbituric acid (TBA) values were measured. The metallic taste, colour, flavour, overall score and TBA values were statistically (P < 0.05) affected by the source and concentration of iron. The best quality was found in cheeses fortified with 40 mg/kg of microencapsulated ferrous sulphate.  相似文献   

7.
The yield and sensory properties of reduced-fat Minas Frescal cheese made from low concentration factor (CF) retentates were studied. Three different CFs were tested (1.2, 1.5 and 1.8). The chemical compositions of the milk, retentate, whey and cheese were determined, as well as the cheese yield. The cheese moisture content decreased with increasing CF. The cheese yield was significantly dependent on the CF in the same direction as the moisture content. Despite compositional differences among the samples, only the cheese made with a CF of 1.8 presented low sensorial acceptance. CF 1.2 was found to be the optimum value for reduced-fat Minas Frescal cheese manufacture in the CF range studied.  相似文献   

8.
The objective of this study was to compare the effect of coagulant (bovine calf chymosin, BCC, or camel chymosin, CC), on the functional and sensory properties and performance shelf-life of low-moisture, part-skim (LMPS) Mozzarella. Both chymosins were used at 2 levels [0.05 and 0.037 international milk clotting units (IMCU)/mL], and clotting temperature was varied to achieve similar gelation times for each treatment (as this also affects cheese properties). Functionality was assessed at various cheese ages using dynamic low-amplitude oscillatory rheology and performance of baked cheese on pizza. Cheese composition was not significantly different between treatments. The level of total calcium or insoluble (INSOL) calcium did not differ significantly among the cheeses initially or during ripening. Proteolysis in cheese made with BCC was higher than in cheeses made with CC. At 84 d of ripening, maximum loss tangent values were not significantly different in the cheeses, suggesting that these cheeses had similar melt characteristics. After 14 d of cheese ripening, the crossover temperature (loss tangent = 1 or melting temperature) was higher when CC was used as coagulant. This was due to lower proteolysis in the CC cheeses compared with those made with BCC because the pH and INSOL calcium levels were similar in all cheeses. Cheeses made with CC maintained higher hardness values over 84 d of ripening compared with BCC and maintained higher sensory firmness values and adhesiveness of mass scores during ripening. When melted on pizzas, cheese made with CC had lower blister quantity and the cheeses were firmer and chewier. Because the 2 types of cheeses had similar moisture contents, pH values, and INSOL Ca levels, differences in proteolysis were responsible for the firmer and chewier texture of CC cheeses. When cheese performance on baked pizza was analyzed, properties such as blister quantity, strand thickness, hardness, and chewiness were maintained for a longer ripening time than cheeses made with BCC, indicating that use of CC could help to extend the performance shelf-life of LMPS Mozzarella.  相似文献   

9.
This study invest0igated the effect of CO2 added to achieve three pH levels: pH 6.1, pH 6.2 and pH 6.3 for treatments X, Y, Z, respectively, on some microbiological properties of Turkish White (TW) brined cheese. For each pH, four batches of cheese were produced from: raw milk with no added carbon dioxide (UR), raw milk with carbon dioxide (TR), pasteurised milk with no carbon dioxide addition (UP) and pasteurised milk with carbon dioxide addition (TP). The microbiological analysis of TW brined cheeses was carried out for 90 days of maturation period. Total aerobic mesophilic bacteria, mesophilic lactic acid bacteria, yeasts and moulds and coliform group were determined in control and CO2 treatment groups. Mesophilic bacteria count was determined as 5.14, 5.29, 5.67 log cfu/g for pH 6.1, 6.2 and 6.3, respectively, in CO2‐treated raw milk cheeses. Yeasts and moulds reduction increased significantly by applying CO2 (P < 0.01). For TW cheese samples, the most significant microbial inactivation was detected at sample groups of pH 6.1.  相似文献   

10.
11.
The composition of bovine milk depends on breed, lactation stage, age of cows and dietary factors. The effect of flaxseed supplementation of forage diet on the chemical composition of milk and the physicochemical and sensory characterisation of Raclette cheese were investigated in this study. As a result of diet supplementation, the proportion of saturated fatty acids in milk decreased and the content of α‐linolenic and oleic acids increased. Concerning the cheese samples, the hardness was significantly reduced due to the flaxseed supplementation, which can positively affect the quality of the cheese due to the diminished risk of crack formation. Sensory characteristics of melted Raclette cheese were not affected by the dietary treatments.  相似文献   

12.
13.
The aim of this paper was to investigate the role of two types of Penicillium roqueforti moulds (type esportazione and dolce) in the ripening of two Gorgonzola‐type cheese varieties. Cheeses were analysed after 4, 14, 30 and 60 days of ripening. Microbiological analysis showed high numbers of total bacterial count, yeasts and moulds in both 60‐day‐old cheese varieties. The concentration of water‐soluble N, nonprotein N and 5% phosphotungstic acid‐soluble N increased significantly during ripening. Patterns of proteolysis by urea‐polyacrylamide gel electrophoresis showed that rind‐to‐core gradients and age‐related changes in moisture and salt content influenced mould and other enzyme activities, which are reflected in various rates of protein degradation. The hydrolysis of αs1‐ and β‐caseins was more extensive in the core than under the rind of both cheese varieties.  相似文献   

14.
The effects of milk protein fortification on the texture and microstructure of cottage cheese curd were evaluated. Protein powder (92.6% protein) was added to the skim milk at a level of 0.4% (w/w) to produce curds. Control curds with no protein powder addition were also produced. These curds were analysed for differences in yield, total solids, curd size, texture and structure. It was found that the addition of protein powder contributed to a significant yield increase, which can be attributed to increased water retention, with better curd size distribution. Control curds were firmer than the fortified curds and the structure showed less open-pore structure as revealed by electron microscopy. However, the addition of dressing masked the textural differences, and a sensory panel was unable to distinguish between cheeses produced from fortified milk and controls.  相似文献   

15.
Flavour models were developed for two samples (A and B) of Swiss cheese which differed in their ripening stage and flavour profile. The models were based on an unripened, freeze-dried cheese of the Mozzarella type. Compounds which, in previous studies had been screened as contributors to the odour and taste of Swiss cheese, were added to the base in various combinations and at concentrations equal to those found in Swiss cheeses A and B. Models composed of methional, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone, acetic acid, propionic acid, lactic acid, succinic acid, glutamic acid, sodium, potassium, calcium, magnesium, ammonium, phosphate and chloride were judged to meet the flavour of Swiss cheese very well.  相似文献   

16.
The effect of gamma irradiation on microbial load, chemical and sensory characteristics of camel meat has been evaluated. Camel meat was irradiated at doses of 0, 2, 4 and 6 kGy of gamma irradiation. Irradiated and non-irradiated meat was kept in a refrigerator (1–4 °C). General composition and sensory evaluation of camel meat was done two days after irradiation, whereas, microbiological and chemical analysis was done immediately after irradiation and throughout the storage periods. The results indicated that all doses of gamma irradiation reduced the total mesophilic aerobic plate counts (TPCs) and total coliforms of camel meat. Thus, the microbiological shelf-life of camel meat was significantly extended from less than 2 weeks (control) to more than 6 weeks (samples irradiated with 2, 4 or 6 kGy). No significant differences in moisture, protein, fat, thiobarbituric acid (TBA) values, total acidity and fatty acids of camel meat were observed due to irradiation. There were slight effects of gamma irradiation in both total volatile basic nitrogen (VBN) and lipid oxidation values in camel meat. Sensory evaluation showed no significant differences between irradiated and non-irradiated camel meats.  相似文献   

17.
The aim of this work was to study the suitability of camel milk for the production of dairy products by lactic acid fermentation. Sixty strains of lactic acid bacteria (LAB) were isolated from camel milk. The strains were tested for their acidification activity, ability to use citrate, exopolysaccharide production, lipolytic, proteolytic activities and resistance to antibiotics. Ten strains were investigated for their ability to metabolize carbohydrates and that resulted in the identification of 5 Lactococcus lactis, 1 Lactobacillus pentosus, 2 Lactobacillus plantarum, 1 Lactobacillus brevis and 1 Pediococcus pentosaceus strains. Two strains of Lactococcus lactis SCC133 and SLch14 were selected to produce traditional Tunisian fermented dairy products (Lben, Raib, Jben cheese and Smen). These strains were chosen based on their acid production capacity and their ability to produce a high yield of biomass.  相似文献   

18.
The effect of high-temperature heat treatment (HH), microfiltration (MF) and ultrafiltration (UF) on the Edam vat milk composition, processing and cheese yield, ripening and functional characteristics were studied. The protein level of the MF and UF cheese milk was adjusted to 42 g/kg, whereas the level in the reference (REF) and HH milk was 34 g/kg. The cheese yield from ultrafiltration and microfiltration milk (CYv) was 12.8 g/100 g milk, yield from reference and high-temperature heat treatment milk was 10.1 and 10.2 g/100 g milk, respectively. The adjusted cheese yield (ACYr), calculated from raw milk, was lowest when MF was used. The pre-concentration method had little effect on the starter activity: no differences were observed in the pH of cheeses. The compositions of the ripened cheeses were comparable. The casein to fat ratio of MF cheese was elevated, possibly due to elevated casein to fat ratio of vat milk. Even though the high-temperature heat treatment, ultrafiltration and microfiltration cheeses were harder than reference cheese, they retained their elasticity. Resilience was significantly higher with microfiltration and ultrafiltration cheeses. The sensory quality of all cheeses was considered according to specification. The pre-treatment methods had little effect on the processing characteristics, cheese quality or yield when calculated on the basis of the quantity of original milk.  相似文献   

19.
Using calf rennet or a commercial microbial rennet substitute derived from Rhizomucor miehei cheesemaking experiments were performed at laboratory and pilot scale, and at commercial scale in two industrial dairy plants during regular production. At all levels of scale, the solids transfer from milk to curd was significantly higher (0.50–1.19%) when using calf rennet. There were significant differences in levels of proteolysis during maturation and in levels of bitterness at 12 weeks of ripening between Gouda cheeses produced with calf rennet or with commercial rennet substitute at pilot and at commercial scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号