首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
In this study,a waveform modification method was proposed using a self-designed heating device combined with the split Hopkinson pressure bar(SHPB) technique for determination of dynamic behaviors of rock at high temperature.Firstly,the temperature gradient distribution on the incident bar was measured according to the variation of elastic modulus of the bar with temperature,and the relationship between the longitudinal wave velocity and temperature of the bar was obtained based on onedimensional stress wave theory.The incident bar with a temperature gradient was divided into a series of microelements,and then the transmission coefficient of the whole incident bar was obtained.Finally,the stress wave was modified by the transmission coefficient from 25℃ to 600℃.This method was used to study the dynamic properties of rock at high temperature,which not only preserves a classical SHPB device,but also effectively ensures the accuracy of the experimental results.A dynamic Brazilian disc experiment was carried out to explore the influences of loading rate and temperature on dynamic tensile strength of sandstone at high temperature using the proposed waveform modification method.  相似文献   

2.
    
《Soils and Foundations》2022,62(5):101206
Coral sand is one kind of the important building materials in coral reef engineering practice. The use of cement as a stabilizing agent can significantly improve the mechanical properties of coral sands and is widely applied in the subbase engineering construction in coral reef islands. Cement-stabilized coral sand structures may contain high contents of fine coral particles and salinity because of the high crushability of coral sands and the existence of seawater surrounding them. In this study, the effects of coral sand powders and seawater salinity on the dynamic mechanical properties of cemented coral sand (CCS) were investigated through the split Hopkinson pressure bar (SHPB) tests and Scanning Electron Microscope (SEM) analysis. It was found that the strength (i.e., the peak stress) of CCS specimens increased firstly and then decreased with the increase of powder content. The specimens reached the maximum peak stress when 3% powder content was included. The initial improvement of CCS strength was attributed to the pore-filling effect of coral powders, namely, the micro pores of the CCS specimens could be more effectively filled with higher percentages of coral powders being used in the experiments. However, excessive coral powders resulted in the reduction of specimen strength because these powders could easily be cemented into agglomerates by absorbing water from the specimens. These agglomerates could reduce the cementation strength between the coarse coral particles and the cement. Meanwhile, the peak stress of CCS specimens was found to be negatively correlated with the average strain rate and the ultimate strain. The degree of specimen fracture was found to be correlated with the amount of specific energy absorption during the tests. Furthermore, the “sulfate attack” caused by the inclusion of salinity of water had different influences on the CCS specimens with different coral powder contents. The ettringite and gypsum produced in “sulfate attack” could fill the pores and lead to cracking of the specimens, significantly affecting the specimen strength.  相似文献   

3.
This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were performed using the Kolsky method and its modifications for dynamic splitting. The mechanical data (e.g. strength, time and energy characteristics) of this material at high strain rates are obtained. It is shown that these characteristics are sensitive to the strain rate. A unified interpretation of these rate effects, based on the structural–temporal approach, is hereby presented. It is demonstrated that the temporal dependence of the dynamic compressive and split tensile strengths of dry and saturated limestone samples can be predicted by the incubation time criterion. Previously discovered possibilities to optimize (minimize) the energy input for the failure process is discussed in connection with industrial rock failure processes. It is shown that the optimal energy input value associated with critical load, which is required to initialize failure in the rock media, strongly depends on the incubation time and the impact duration. The optimal load shapes, which minimize the momentum for a single failure impact, are demonstrated. Through this investigation, a possible approach to reduce the specific energy required for rock cutting by means of high-frequency vibrations is also discussed.  相似文献   

4.
         下载免费PDF全文
Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different fr...  相似文献   

5.
以改善矿石破碎效率和能耗为目的,采用微波照射与霍普金森压杆(SHPB)相结合的试验方法,开展不同微波参数照射前、后磁铁矿石动力学性能及破碎特征研究,对比分析其宏观力学性能与微观结构特征,揭示微波弱化磁铁矿石力学性能的作用机制.结果表明:微波照射功率比照射时间对磁铁矿石的动力学性能的影响更为显著,只有当功率达到一定程度时...  相似文献   

6.
    
Rocks are increasingly used in extreme environments characterised by high loading rates and high confining pressures.Thus the fracture properties of rocks under dynamic loading and confinements are critical in various rock mechanics and rock engineering problems.Due to the transient nature of dynamic loading,the dynamic fracture tests of rocks are much more challenging than their static counterparts.Understanding the dynamic fracture behaviour of geomaterials relies significantly on suitable and reliable dynamic fracture testing methods.One of such methods is the notched semi-circle bend(NSCB) test combined with the advanced split Hopkinson pressure bar(SHPB) system,which has been recommended by the International Society for Rock Mechanics and Rock Engineering(ISRM) as the standard method for the determination of dynamic fracture toughness.The dynamic NSCB-SHPB method can provide detailed insights into dynamic fracture properties including initiation fracture toughness,fracture energy,propagation fracture toughness and fracture velocity.This review aims to fully describe the detailed principles and state-of-the-art applications of dynamic NSCB-SHPB techniques.The history and principles of dynamic NSCB-SHPB tests for rocks are outlined,and then the applications of dynanic NSCB-SHPB method(including the measurements of initiation and propagation fracture toughnesses and the limiting fracture velocity,the size effect and the digital image correlation(DIC) experiments) are discussed.Further,other applications of dynamic NSCB-SHPB techniques(i.e.the thermal,moisture and anisotropy effects on the dynamic fracture properties of geomaterials,and dynamic fracture toughness of geomaterials under pre-loading and hydrostatic pressures) are presented.  相似文献   

7.
The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage induced by microwave irradiation on rock fragmentation is necessary.In this context,cylindrical Fangshan granite(FG)specimens were exposed to microwave irradiation at a power of 6 kW for different durations up to 4.5 min.The damages of the specimens induced by irradiation were quantified by using both X-ray micro-CT scanning and ultrasonic wave measurement.The CT value and Pwave velocity decreased with increase of irradiation duration.The irradiated specimens were then tested using a split Hopkinson pressure bar(SHPB)system to simulate rock fragmentation.A momentum-trap technique was utilized to ensure single-pulse loading on the specimen in SHPB tests,enabling valid fragment size distribution(FSD)analysis.The dependence of dynamic uniaxial compressive strength(UCS)on the irradiation duration and loading rate was revealed.The dynamic UCS increased with increase of loading rate while decreased with increase of irradiation duration.Using the sieve analysis,three fragmentation types were proposed based on FSD,which were dictated by both loading rate and irradiation duration.In addition,an average fragment size was proposed to quantify FSD.The results showed that the average fragment size decreased with increase of loading rate.A loading rate range was identified,where a dramatic reduction of the average fragment size occurred.The dependence of fragmentation on the irradiation duration and loading rate was also discussed.  相似文献   

8.
采用φ100 mm分离式霍普金森压杆(split Hopkinson pressure bar,简称SHPB)试验装置,分别对常温和经历200、400、600、800℃高温作用后的混凝土进行了冲击压缩试验,分析了高温和应变率对混凝土动态压缩力学性能的影响,并对其关系进行了拟合。结果表明:经历不同温度作用后的混凝土动态抗压强度、峰值应变以及比能量吸收都表现出较强的应变率效应。高温对混凝土动态力学性能影响显著,400℃是混凝土各项力学指标发生转折的温度:动态抗压强度、比能量吸收在400℃时回升至与常温接近,在400℃后又迅速下降;峰值应变在400℃以后增加明显,并随着应变率的提高而迅速增加。混凝土经400℃以上高温作用后,虽然强度损失严重,但在冲击荷载作用下,尤其是在较高应变率下,仍表现出良好的抗冲击韧性。  相似文献   

9.
 节理对岩体的动态力学特性有重要影响。采用改进型霍普金森花岗岩压杆(SHPB)实验设备,研究一维应力波在花岗岩人工节理处的传播规律,进而分析节理的动力学特性。通过切割工艺在花岗岩试样表面形成人工节理,使其具有不同的节理吻合系数(JMC)。采用两点式波分离方法处理实验数据,得到节理处的入射波,以及节理产生的反射波和透射波,进一步计算得到应力波传播通过节理的透射系数。基于SHPB实验的基本原理,得到节理的闭合量和作用在节理上的压力之间的关系,从而分析出节理的比刚度。该实验分析节理吻合系数对波传播的影响,进而研究节理吻合系数对花岗岩节理动态力学特性的影响。  相似文献   

10.
Impact compression experiments for the steel fiber-reinforced high-strength concrete (SFRHSC) at medium strain rate were conducted using the split Hopkinson press bar (SHPB) testing method. The volume fractions of steel fibers of SFRHSC were between 0 and 3%. The experimental results showed that, when the strain rate increased from threshold value to 90 s−1, the maximum stress of SFRHSC increased about 30%, the elastic modulus of SFRHSC increased about 50%, and the increase in the peak strain of SFRHSC was 2–3 times of that in the matrix specimen. The strength and toughness of the matrix were improved remarkably because of the superposition effect of the aggregate high-strength matrix and steel fiber high-strength matrix. As a result, under impact loading, cracks developed in the SFRHSC specimen, but the overall shape of the specimen remained virtually unchanged. However, under similar impact loading, the matrix specimens were almost broken into small pieces. __________ Translated from Journal of Southeast University (Natural Science Edition), 2007, 37(5): 892–897 [译自: 东南大学学报(自然科学版)]  相似文献   

11.
Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks. Here we examine dynamic tensile strength values of Laurentian granite (LG) measured from three methods: dynamic direct tension, dynamic Brazilian disc (BD) test, and dynamic semi-circular bending (SCB). We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.  相似文献   

12.
In this paper,the Johnson-Holmquist concrete(JHC)constitutive model is adopted for modeling and simulating the fracture of dolomite.A detailed step-by-step procedure for determining all required parameters,based on a series of experiments under quasi-static and dynamic regimes,is proposed.Strain rate coefficients,failure surfaces,equations of state and damage/failure constants are acquired based on the experimental data and finite element analyses.The JHC model with the obtained parameters for dolomite is subsequently validated using quasi-static uniaxial and triaxial compression tests as well as dynamic split Hopkinson pressure bar(SHPB)tests.The influence of mesh size is also analyzed.It shows that the simulated fracture behavior and waveform data are in good agreement with the experimental data for all tests under both quasi-static and dynamic loading conditions.Future studies will implement the validated JHC model in small-and large-scale blasting simulations.  相似文献   

13.
SHPB试验中高温下岩石变形破坏过程的能耗规律分析   总被引:1,自引:0,他引:1  
利用带高温装置的φ100 mm分离式Hopkinson压杆试验系统进行不同高温下大理岩的SHPB试验,分析岩石在冲击破坏过程中的能量耗散特征,探讨冲击加载速率、入射能等对高温下大理岩能耗特征的影响,分析冲击破碎分维及破碎块度与能量耗散的内在联系。研究结果表明:同一高温下大理岩破碎的比能量吸收随着加载速率、入射能的增加均近似线性增加;破碎分维随比能量吸收的增加近似线性增长,而平均破碎块度随比能量吸收的增加逐渐减小,大致呈指数关系。同一高温下岩石的冲击破坏过程中,比能量吸收愈大,岩石的平均破碎块度就愈小,分形维数就愈大,岩石的破碎程度也就愈剧烈。从能量耗散的角度可以较合理地反映岩石变形破坏的全过程。  相似文献   

14.
采用φ100mm分离式霍普金森压杆(SHPB)试验装置,研究了不同体积掺量(Vcf)的碳纤维混凝土(CFRC),在多个应变率条件下的动态压缩力学性能,得到了应力-应变曲线.结果表明,CFRC的强度随应变率的增加而近似呈线性增长,纤维体积掺量为O.3%碳纤维混凝土变形能力较好.分析了试件的加载波形图和应变率时程曲线,试验中近似恒应变率加载时间比例大于50.2%.在相同应变率范围内,CFRC的破坏程度与素混凝土相比较轻,说明碳纤维的加入增强了混凝土的抗冲击件能.  相似文献   

15.
为探讨含水煤样动静组合加载下的力学特征,利用改进split Hopkinson pressure bar(SHPB)和RMT–150试验系统对自然和饱水7 d煤样进行了三维动静组合加载、三维静载对比试验。结果表明:三维静载试验中,自然煤样峰值强度变化幅度为10.49%,饱水7 d煤样峰值强度变化幅度为59.98%,饱水强度软化系数为0.81;三维动静组合加载试验中,轴压强度低于单轴静载煤样强度的55%时,饱水7 d煤样的动态强度高于自然煤样动态强度,饱水7 d煤样比自然煤样动态强度分别提高了7.85%~18.44%(围压4 MPa)和8.71%~19.84%(围压8 MPa);不同围压相同轴压试验中,自然和饱水7 d煤样的动态强度随着围压增大均呈增大趋势,饱水7 d煤样动态强度增加幅度比自然煤样动态强度增加幅度大,表明饱水煤样对围压变化的响应较强。揭示饱水对煤样的强度影响较显著,但应变率起到控制作用,中或高应变率条件下裂隙水与裂隙耦合形成较大刚度,三维动静组合加载饱水煤样动态强度呈增高特征。  相似文献   

16.
 为了研究纯I和I/II复合型裂纹在冲击荷载作用下的动态断裂行为,基于提出的单裂纹半孔板(SCSC)构型和大直径分离式霍普金森压杆设备,使用2种石材进行岩石的纯I和I/II复合型的动态断裂实验;同时,实验中使用新装置(裂纹扩展计和高速摄影系统)来监测裂纹的扩展速度。为了检验实验结论,基于Drucker-Prager强度模型和累积损伤失效准则,建立针对纯I和I/II复合型裂纹的数值模型,并使用AUTODYN软件来模拟裂纹的扩展行为。总体上,由数值模拟得到的裂纹扩展路径和实验结果十分吻合。研究结果表明,在裂纹扩展的过程中,其扩展速度是一个变化量,甚至有可能停滞,也就是说可能出现止裂现象;同时,CPG和高速摄影系统都可以很好的反映出此现象,并且高速摄影系统更加直观,说明在动态断裂研究中是适用的,同时给出纯I型动态断裂实验裂纹扩展速度特征,供工程参考。  相似文献   

17.
以NaOH,Na2CO3为碱激发剂,制备了强度等级为C30的碱矿渣粉煤灰基混凝土(ASFC),运用改进后的100分离式霍普金森压杆(SHPB)试验装置开展了冲击劈裂拉伸和压缩试验,从能量角度分析了ASFC在冲击荷载下的损伤特性,并进行了对比研究.结果表明:ASFC的破坏形态均随着入射能量平均变化率的增加而趋于严重,ASFC的能量吸收量也随入射能量平均变化率的增大而增加,但增加速率逐渐变缓,总体规律可用二次多项式关系来表示;ASFC在冲击压缩状态下的破坏状况明显比冲击劈裂拉伸状态下严重,而且能量吸收量和增加速率均远大于冲击劈裂拉伸状态;ASFC的抗冲击损伤能力随着冲击力度的增大而增加,且与冲击作用形式有关,在压缩状态下的抗冲击损伤能力比劈裂拉伸状态更为优异.  相似文献   

18.
Assessment of the reinforcement behavior of soil under cyclic and monotonic loads is of great importance in the safe design of mechanically stabilized earth walls. In this article, the method of conducting a multistage pullout (MSP) test on the polymeric strip (PS) is presented. The post-cyclic behavior of the reinforcement can be evaluated using a large-scale pullout apparatus adopting MSP test and one-stage pullout (OSP) test procedures. This research investigates the effects of various factors including load amplitude, load frequency, number of load cycles and vertical effective stress on the peak apparent coefficient of friction mobilized at the soil-PS interface and the pullout resistance of the PS buried in dry sandy soil. The results illustrate that changing the cyclic tensile load frequency from 0.1 Hz to 0.5 Hz does not affect the pullout resistance. Moreover, the influence of increasing the number of load cycles from 30 to 250 on the peak pullout resistance is negligible. Finally, the effect of increasing the cyclic tensile load amplitude from 20% to 40% on the monotonic pullout resistance can be ignored. The peak apparent coefficient of friction mobilized at the soil-PS interface under monotonic and cyclic load conditions decreases with the increase in vertical effective stress.  相似文献   

19.
    
《Soils and Foundations》2005,45(1):15-26
A systematic investigation of the undrained behavior of sand at high pressures was performed to study the effects of initial relative density on the stress-strain, pore pressure, and strength behavior. Experiments were conducted on Cambria sand with initial relative densities of 30% and 60%, and the results are compared with previously published data for an initial relative density of 90%. Triaxial compression and extension tests were performed on cylindrical specimens with isotropic consolidation pressures in the range from 8 to 60MPa. Particle crushing played an important role in the observed behavior. Stress-strain, pore pressure, and strength behavior were found to be very similar and almost independent of initial relative density at high pressures, because the isotropic compression curves tend to merge once particle breakage becomes important at these high pressures. Effective stress friction angles for undrained compression and extension tests varied systematically in the range from 32° to 35° with slightly higher values for the compression tests. Interpretation of all results from the experimental study in terms of total stresses shows that sand at high pressures behaves similar to a normally consolidated clay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号