首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Heterogeneous Fenton catalysts have been used to treat various organic pollutants in an aqueous environment. The present study has investigated the degradation of 2,4‐dinitrophenol (2,4‐DNP), a priority pollutant generated by such industries as pharmaceuticals, pesticides, pigments and dyes. Degradation of 2,4‐DNP (100 mg L?1) was studied using Fe3+ loaded on Al2O3 as a heterogeneous catalyst in the presence of H2O2, and the efficiency compared with the homogeneous Fe3+/H2O2 based Fenton‐like process. The effect of different parameters for both processes, such as catalyst loading, H2O2 concentration, initial solution pH, initial substrate concentration and temperature were investigated and the optimum operating conditions determined. RESULTS: Under optimal operating conditions of the homogeneous system ([Fe3+] 125 mg L?1; [H2O2] 250 mg L?1; pH 3; room temperature), 92.5% degradation was achieved in 35 min for an initial 2,4‐DNP concentration of 100 mg L?1. In the case of immobilized Fe (Fe3+–Al2O3 catalyst), degradation improved to 98.7% under the condition 10 wt% [Fe3+–Al2O3] 1 g L?1 catalyst loading; [H2O2] 250 mg L?1; pH 3; at room temperature for the same duration. CONCLUSIONS: This study demonstrated the stability and reusability of the prepared heterogeneous catalyst. This process is a viable technique for treatment of aqueous solutions containing contaminants. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
A Fenton‐like process, involving oxidation and coagulation, was evaluated for the removal of odorous compounds and treatment of a pulp and paper wastewater. The main parameters that govern the complex reactive system [pH and Fe(III) and hydrogen peroxide concentrations] were studied. Concentrations of Fe(III) between 100 and 1000 mg L?1 and of H2O2 between 0 and 2000 mg L?1 were chosen. The main mechanism for color removal was coagulation. The maximum COD, color and aromatic compound removals were 75, 98 and 95%, respectively, under optimal operating conditions ([Fe(III)] = 400 mg L?1; [H2O2] = 500–1000 mg L?1; pH = 2.5; followed by coagulation at pH 5.0). The biodegradability of the wastewater treated increased from 0.4 to 0.7 under optimal conditions and no residual hydrogen peroxide was found after treatment. However, partially or non‐oxidized compounds present in the treated wastewater presented higher acute toxicity to Artemia salina than the untreated wastewater. Based on the optimum conditions, pilot‐scale experiments were conducted and revealed a high efficiency in relation to the mineralization of organic compounds. Terpenes [(1S)‐α‐pinene, β‐pinene, (1R)‐α‐pinene and limonene] were identified in the wastewater and were completely eliminated by the Fenton‐like treatment. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
This work evaluates Fenton oxidation for the removal of organic matter (COD) from cork‐processing wastewater. The experimental variables studied were the dosages of iron salts and hydrogen peroxide. The COD removal ranged from 17% to 79%, depending on the reagent dose, and the stoichiometric reaction coefficient varied from 0.08 to 0.43 g COD (g H2O2)?1 (which implies an efficiency in the use of hydrogen peroxide varying from 17% to 92%). In a study of the process kinetics, based on the initial rates method, the COD elimination rate was maximum when the molar ratio [H2O2]o:[Fe2+]o was equal to 10. Under these experimental conditions, the initial oxidation rate was 50.5 mg COD dm?3 s?1 with a rate of consumption of hydrogen peroxide of 140 mg H2O2 dm?3 s?1, implying an efficiency in the use of the hydrogen peroxide at the initial time of 77%. The total amount of organic matter removed by Fenton oxidation was increased by spreading the H2O2 and ferrous salt reagent over several fractions by 15% for two‐fractions and by 21% for three‐fractions. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
The removal of metsulfuron methyl (MeS)—a sulfonyl urea herbicide from contaminated water was investigated by advanced oxidation process (AOP) using Fenton method. The optimum dose of Fenton reagent (Fe2+/H2O2) was 10 mg/L Fe2+ and 60 mg/L H2O2 for an initial MeS concentration ([MeS]0) range of 0–80 mg/L. The Fenton process was effective under pH 3. The degradation efficiency of MeS decreased by more than 70% at pH > 3 (pH 4.5 and 7). The initial Fe2+ concentration ([Fe2+]0) in the Fenton reagent affected the degradation efficiency, rate and kinetics. The degradation of MeS at optimum dose of Fenton reagent was more than 95% for [MeS] 0 of 0–40 mg/L and the degradation time was less than 30 min. The determination of residual MeS concentration after Fenton oxidation by UV spectrophotometry was affected by the interferences from Fenton reagent. The estimation of residual MeS concentration after Fenton oxidation by high pressure/performance liquid chromatograph (HPLC) was interference free and represented the actual concentration of MeS and does not include the by-products of Fenton oxidation. The degradation kinetics of MeS was modelled by second order reactions involving 8 rate constants. The two reaction constants directly involving MeS were fitted using the experimental data and the remaining constants were selected from previously reported values. The model fit for MeS and the subsequent prediction of H2O2 were found to be within experimental error tolerances.  相似文献   

5.
Spent caustic can be treated by several treatment methods. Among the advanced techniques, Fenton reagent has many advantages. But since spent caustic contains excessive amounts of sulfide compounds, utilizing this technique in treatment of such wastewaters is not economical. The acid neutralization step, which was applied as the pretreatment process, showed an 84% COD abatement at temperature equal to 80 °C and a pH equal to 4.0. The acid neutralized wastewater was then introduced to the chelate-modified Fenton system and oxidized. Using a ratio of tartrate/Fe2+=1.1, reaction time=50min, temperature=95 °C, Fe2+=110mg/l and a ratio of H2O2/COD=1.2 in the chelate-modified Fenton system at an optimum pH value equal to 1.9, total COD abatement of the wastewater reached over 99.4%. Having tartrate added to the Fenton system, a series of photochemical reactions enhanced Fe2+ and hydroxyl radicals’ generation. This method has proved to be the recommended technique for the contamination abatement of spent caustic.  相似文献   

6.
ABSTRACT

This study has evaluated the efficiency of Fenton process followed by coagulation to treat real effluent from fish farm. Fenton obtained Chemical Oxygen Demand and turbidity removal of 48% at (0.5 mg L?1 Fe2+ and 10 mmol H2O2). Fenton followed by coagulation reduced COD and turbidity by almost 100%. The process also decreased the concentrations of suspended solids, phosphate, nitrate, Biological Oxygen Demand, and nitrite. Ecotoxicology test indicated that the effluent treated with 0.5 mmol L?1 Fe2+ in 10 mmol L?1 H2O2 displayed the lowest toxicity. These findings can indicate an environmental friendly alternative to treat fish farm effluent.  相似文献   

7.
In this paper, the removal of phenol from simulated wastewater was studied using gas–liquid fluidized bed with the Fenton reagent. The factors that affect the removal rate of phenol were investigated, including the initial concentrations of hydrogen peroxide [H2O2] and [Fe2+], the molar ratio of [Fe2+]/[H2O2], pH value, temperatures, reaction time, and the ventilation volume. It was found that the optimal operating conditions existed as: [H2O2] = 12 mmol/L, [H2O2]/[Fe2+] = 4:1, pH = 4, T = 60 °C, reaction time of 30 min, and a ventilation volume of 0.12 m3/h. Under these conditions, the phenol removal rate of about 96% was obtained.  相似文献   

8.
BACKGROUND: The discharge of azo dyes into the environment poses concerns due to their limited biodegradability. The electro‐Fenton process (EF) is a good method to effectively degrade these dyes. The aim of this work was to study the mechanism and the feasibility of the EF reaction using an activated carbon fibre (ACF) cathode. In this study, two methods were used to measure the reactive species generated in anodic oxidation (AO), anodic oxidation with electrogenerated H2O2 (AO‐H2O2) and the EF process. Acid Red 14 (AR14) was chosen as a model pollutant. The effects of the operational parameters, pH and initial concentrations were investigated. A short‐term biodegradability test was also carried out to evaluate the EF process from a biological point of view. RESULTS: After 2 h EF reaction 118.7 µmol L?1?OH were produced, which was much higher than that of the AO‐H2O2 (63.2 µmol L?1) process. H2O2 is largely generated and Fe3+ efficiently reduced on the high surface area of the ACF cathode. The EF process provides more effective degradation of AR14 than the conventional Fenton process, and its current efficiency is significantly affected by the initial pH and the initial AR14 concentration. Following EF treatment, the biodegradability of AR14 is significantly increased. CONCLUSION: The higher formation of ?OH in the EF process suggests it is an effective method for pollutant removal. This process also leads to increased biodegradability, which is expected to facilitate subsequent biological treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Successful decolorisation of real textile wastewater was achieved by means of the advanced Fenton process in conjunction with ultrasound technology. A synergy factor of 6.9 for this combined method was determined. The decolorisation followed zero‐order kinetics, and the rate increased with increasing zero‐valent iron dose and decreasing pH and hydrogen peroxide concentration. The optimum conditions for an American Dye Manufacturers Institute decolorisation value of 1638 ADMI was found to be a pH of 3.0, an ultrasound frequency of 47 kHz, a zero‐valent iron dose of 1.0 g l?1, and a hydrogen peroxide concentration of 1.03 × 10?2 m . Under these conditions, the estimated operating cost to decolorise 96% true colour was estimated to be $US 4.51 m?3. The study demonstrated that the given combined method could be applied to decolorise textile wastewaters.  相似文献   

10.
BACKGROUND: A mesoporous alumina supported nanosized Fe2O3 was prepared through an original synthesis procedure and used as a heterogeneous catalyst for the Fenton process degradation of the model azo dye C.I. Acid Orange 7 enhanced by ultrasound irradiation (US/Fe2O3‐Al2O3‐meso/H2O2 system). The effect of various operating conditions was investigated, namely hydrogen peroxide concentration, initial pH, ultrasonic power and catalyst loading. RESULTS: The results indicated that the degradation of C.I. Acid Orange 7 followed a pseudo‐first‐order kinetic model. There exists an optimal hydrogen peroxide concentration, initial pH, ultrasonic power and catalyst loading for decolorization. The aggregate size of the spent catalyst was reduced after dispersion in water by ultrasonic irradiation. A very low level of iron leaching was observed ranging from < 0.1 to 0.23 mg L?1. The intermediate products of C.I. Acid Orange 7 degradation were identified using gas chromatography–mass spectrometry (GC‐MS). CONCLUSION: The optimal conditions for efficient C.I. Acid Orange 7 degradation were pH close to 3, hydrogen peroxide concentration 4 mmol L?1, catalyst loading 0.3 g L?1, and ultrasonic power 80 W. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
A coupled O3/Fenton process is applied to study the degradation ef?ciency of organic pollutants. The C.I. Acid Blue 80 (AB80), a kind of anthraquinone dye, is used as target contaminant. The results show that the combination of ozonation and Fenton process is a highly effective way of removing color from wastewater. Response surface methodology is applied to optimize the working conditions and the effects and interactions among initial pH (X1), mole ratio of H2O2/Fe2+ (X2) and ozone flux (X3) are investigated. Regression equations determines that the best condition is that initial pH = 2.85, [H2O2]/[Fe2+] = 18.10 and ozone flux = 55.70 L.h?1. It turns out the relative error of 1.32% with the predicted model when the actual value which is 88.76% in the best condition, compared to the predictive value of 88.95% under same condition. UV-Vis and FT-IR analysis are used as an assisted technique to study degradation mechanism during the oxidation process. The intermediate products are determined by gas chromatography/mass spectrometry (GC/MS) analysis and the plausible degradation pathway is proposed.  相似文献   

12.
This study presents the results of the Sono-Fenton process for the degradation of 2,4-dichlorophenol (DCP). The influential parameters such as H2O2, Fe2+ and pH for the Sono-Fenton process were investigated. Sono-Fenton method was found to be the best one for degradation efficiency of DCP when compared with that of the Fenton process. The optimum concentrations for the degradation of DCP using conventional Fenton’s method were found to be 20 mg/L of Fe2+ and 580 mg/L of H2O2 at pH 2.5. In the case of Sono-Fenton, the optimal concentrations were found to be 10 mg/L of Fe2+ and 400 mg/L of H2O2 at pH 2.5. Sono-Fenton method resulted in the reduction of required Fe2+ concentration (50%) and H2O2 concentration (31%). In addition, this method could be applicable even at pH 5.0 and a degradation efficiency of DCP was 77.6%. Kinetic studies for the degradation of DCP proved that the degradation of DCP tends to follow pseudo first order reaction and the rate constant was found to be 7 × 10−4 min−1.  相似文献   

13.
BACKGROUND: Microwave‐enhanced advanced oxidation processes with and without the addition of ferrous sulfate (MW/H2O2/Fe2+‐AOP and MW/H2O2‐AOP respectively) were studied for reduction of solids and solubilisation of nutrients from secondary sewage sludge. RESULTS: For the MW/H2O2/Fe2+‐AOP the yields of solubilisation of orthophosphate and ammonia decreased with increasing temperature. The best results (88.1 mg L?1 for orthophosphate and 22.7 mg L?1 for ammonia) were obtained at a treatment temperature of 40 °C. In contrast, the MW/H2O2‐AOP had an advantage when it was operated at higher temperatures of 60 and 80 °C. The highest yields of solubilisation were obtained at 60 °C for orthophosphate (81.1 mg L?1) and at 80 °C for both ammonia (35.0 mg L?1) and soluble chemical oxygen demand (1954 mg L?1). Over the temperature range used in this study, the MW/H2O2‐AOP gave a better performance than the MW/H2O2/Fe2+‐AOP. CONCLUSION: For sewage sludge treatment the MW/H2O2‐AOP is more effective than the MW/H2O2/Fe2+‐AOP in terms of solid reduction and nutrient solubilisation. It will also be more cost‐effective, as it does not require iron addition in the process. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
《分离科学与技术》2012,47(7):1505-1520
Abstract

Fenton‐and Fenton‐like AOPs systems have been utilized for the oxidative degradation of some chlorinated pollutants such as chloral hydrate or 1,1,1‐trichloroethane, and for the treatment of real industrial wastewaters. Both ferrous sulfate (FeSO4 · 7 H2O) and Mohr's salt (NH4)2Fe(SO4)2. 6 H2O have been used as Fe2+ ion sources. With Mohr's salt (MS) the Fenton‐and Fenton‐like reaction has been successfully carried out under acidic (pH 3) and neutral (pH 7) reaction conditions. The new Fenton‐like system utilizes zero‐valent iron (Feo) instead of ferrous sulfate has been applied for the 1,1,1‐trichloroethane and chloral hydrate degradation. Similarly, the application of catechol‐ and hydroquinone‐driven Fenton reaction for the degradation of chloral hydrate under acidic and neutral pH is a new Fenton‐like AOPs approach. The photo‐Fenton‐like reactions such as Fe3+/hν, Fe2+/H2O2/hν, and ferrioxalate system have been also studied for the degradation of chloral hydrate. As an irradiation source a daily light or sun light have been used. In comparison with photoreactor experiments the best system was observed to be Fe3+/hν. In some experiments the influence of standing time prolongation after Fenton reaction on the final degradation efficiency due to hydrolysis of intermediates such as phosgene (CCl2?O) has also been studied. The Fenton reaction was successfully utilized for the treatment of real industrial wastewaters, in two cases even in plant‐scale applications.  相似文献   

15.
BACKGROUND: The Fenton process is a popular advanced oxidation process (AOP) for treating textile wastewater. However, high consumption of chemical reagents and high production of sludge are typical problems when using this process and in addition, textile wastewater has wide‐ranging characteristics. Therefore, dynamically regulating the Fenton process is critical to reducing operation costs and enhancing process performance. The artificial neural network (ANN) model has been adopted extensively to optimize wastewater treatment. This study presents a novel Fenton process control strategy using ANN models and oxygen reduction potential (ORP) monitoring to treat two synthetic textile wastewaters containing two common dyes. RESULTS: Experimental results indicated that the ANN models can predict precisely the colour and chemical oxygen demand (COD) removal efficiencies for synthetic textile wastewaters with correlation coefficients (R2) of 0.91–0.99. The proposed control strategy based on these ANN models effectively controls the Fenton process for various effluent colour targets. For treating the RB49 synthetic wastewater to meet the effluent colour targets of 550 and 1500 ADMI units, the required Fe+2 doses were 13.0–84.3 and 5.5–34.6 mg L?1 (Fe+2/H2O2 = 3.0), resulting in average effluent colour values of 520 and 1494 units. On the other hand, an effluent colour target of 550 ADMI units was achieved for RBB synthetic wastewater. The required Fe+2 doses were 14.6–128.0 mg L?1; the average effluent colour values were 520 units. CONCLUSION: The Fenton process for textile wastewater treatment was effectively controlled using a control strategy applying the ANN models and ORP monitoring, giving the benefit of chemical cost savings. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
BACKGROUND: The degradation and mineralisation of the antibiotic amoxicillin by photo‐Fenton reactions, mediated by artificial UVA or solar irradiation, were investigated. Experiments were conducted with 30 mg L?1 amoxicillin solutions prepared with deionised or surface water at Fe2+ and H2O2 concentrations in the range 0.0179–0.0895 and 1–10 mmol L?1, respectively. Black‐light irradiation at 365 nm was provided by a 13 W m?2 lamp, while samples were exposed to sunlight at 20 W m?2 for solar experiments. RESULTS: In all cases, quantitative amoxicillin degradation occurred within 5 min and this was accompanied by lower mineralisation rates. Mineralisation followed first‐order kinetics with respect to organic carbon content and it was not affected by the water matrix with either type of illumination. Solar‐induced reactions were only marginally faster than artificial irradiation. Increasing the H2O2 to Fe2+ concentration ratio increases the extent of mineralisation up to a point beyond which degradation is impeded due to radical scavenging associated with the high concentrations of the Fenton reagents. CONCLUSION: Amoxicillin is readily degradable by homogeneous photocatalysis, being converted to more stable intermediates as indicated by lower mineralisation rates. The process can be driven by solar irradiation, thus providing a sustainable treatment technology. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
《分离科学与技术》2012,47(7):1597-1611
Abstract

Some advanced oxidation processes (AOP's) such as Fenton H2O2/Fe2+, photo assisted Fenton UV/H2O2/Fe2+, UV photolysis, and photo assisted Fenton—like UV/O2/Fe2+ have been tested for the degradation of Gemfibrozil in aqueous solution in a batch system and then in a membrane reactor. A nanofiltration/reverse osmosis type cross‐linked polyamide, UTC‐60 (Toray) membrane (19 cm2) was used. In the batch degradation tests, the gemfibrozil, used at 5 mg/L, was degraded by employing the four AOP's but numerous peaks of intermediates were observed at the HPLC. Indeed DOC analyses showed poor mineralization in the case of photolysis (3.1%) and UV/O2/Fe (10%), while it was 62% using the photo assisted Fenton and 24% using the Fenton. Thus in the membrane reactor only the Fenton and the photo assisted Fenton were tested. Obtained results showed a drug degradation higher than 92%, a mineralization higher than 55%, and a membrane retention of the catalyst in solution higher than 95%.  相似文献   

18.
The electro‐Fenton (EF) process is a promising method combining electrochemical reactions and Fenton's reagent. In this hybrid process, the electrical current induces the in situ generation of H2O2 via reduction of oxygen, and the catalytic reaction is propagated by Fe2+ regeneration, which can take place by reduction of Fe3+ with H2O2, hydroperoxyl radical, organic radical intermediates, or directly at the cathode. Recent advances in the EF process are discussed and several key variables analyzed, including electrode material, initial pH, and Fenton's reagents, in order to extend the applicability of this technology.  相似文献   

19.
《分离科学与技术》2012,47(7):1521-1534
Abstract

Aqueous solutions of Acid Blue 74, Acid Orange 10, and Acid Violet 19 were subjected to Fenton/Fenton‐like oxidation and its combination with lime coagulation. The analysis indicated no dependence of chemical oxidation efficacy on dye concentration in the range of 0.1–1 g L?1. Complete or nearly complete (higher than 95%) color removal of all treated samples was observed. Dye:H2O2 weight ratio of 1∶2 proved optimal for treatment of all dye solutions by means of Fenton/Fenton‐like oxidation. Moderate doses of hydrogen peroxide led to the improvement of biodegradability of dye solutions. No formation of any toxic intermediates during the oxidation of Acid Orange 10 and Acid Violet 19 was detected. Only a slight toxicity increase was observed after Acid Blue 74 degradation by Fenton chemistry. H2O2/Fe3+ system with pH adjusted to 3 proved the most effective oxidation process. The combination of Fenton chemistry and subsequent lime coagulation was the most feasible treatment method of removing COD and UV254 and UVmax absorbance of dye solutions. Combined oxidation and coagulation was more effective for Acid Blue 74 and Acid Orange 10 elimination than for Acid Violet 19.  相似文献   

20.
亚甲基蓝光度法研究基于CaO2的Fenton反应条件   总被引:1,自引:0,他引:1       下载免费PDF全文
刘娇  孟范平  王震宇  刘启元 《化工学报》2011,62(9):2520-2526
CaO2作为原位Fenton 氧化修复中H2O2持续供源的作用逐渐受到关注。利用亚甲基蓝分光光度法评价了基于CaO2的Fenton反应中催化剂种类、初始pH值、CaO2用量、催化剂和CaO2比例、磷酸缓冲溶液浓度对羟基自由基(HO·)产率的影响。结果表明,采用Fe2+作为催化剂,在pH值为4、CaO2相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号