首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
Intended to avoid the complicated computations of elasto‐plastic incremental analysis, limit analysis is an appealing direct method for determining the load‐carrying capacity of structures. On the basis of the static limit analysis theorem, a solution procedure for lower‐bound limit analysis is presented firstly, making use of the element‐free Galerkin (EFG) method rather than traditional numerical methods such as the finite element method and boundary element method. The numerical implementation is very simple and convenient because it is only necessary to construct an array of nodes in the domain under consideration. The reduced‐basis technique is adopted to solve the mathematical programming iteratively in a sequence of reduced self‐equilibrium stress subspaces with very low dimensions. The self‐equilibrium stress field is expressed by a linear combination of several self‐equilibrium stress basis vectors with parameters to be determined. These self‐equilibrium stress basis vectors are generated by performing an equilibrium iteration procedure during elasto‐plastic incremental analysis. The Complex method is used to solve these non‐linear programming sub‐problems and determine the maximal load amplifier. Numerical examples show that it is feasible and effective to solve the problems of limit analysis by using the EFG method and non‐linear programming. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the analytical solution of the crack tip fields as well as the crack parameters in an infinitely large composite plate with a central crack subjected to pure shear loading. To this end, the complex variable method is employed to formulate an asymptotic solution for the crack tip fields in an anisotropic plane. Using a stress‐based definition of the crack tip modes of loading, only the mode II crack parameters are found to be non‐zero under pure shear load. Special focus is given to the determination of the higher order parameters of the crack tip asymptotic field, particularly the first non‐singular term, ie, the T‐stress. Unlike the isotropic materials, in which the T‐stress is zero under pure shear, it is found that the T‐stress is non‐zero for the case of anisotropic materials, being the only material‐dependent crack tip stress parameter. The veracity of our exact crack tip fields is assessed and verified through a comparison made with respect to the finite element (FE) solution. Finally, we demonstrate the significance of the T‐stress on stresses near the crack tip in composite plates under pure shear loads.  相似文献   

3.
The structure of the non‐linear constitutive models is a key to control non‐linear behaviours of materials. Because the non‐linear mechanical mechanism is not clearly understood in most cases, it is very difficult to assume the structure of the model in advance. The recognition of the structure of the model from experimental results can help understanding of the mechanism. This recognition is a dynamic search problem being highly multimodal, multi‐variable with high order, and needing a large parameter space. How to obtain a global optimum solution is a key to this problem. In this paper, a hybrid evolutionary algorithm is proposed for coupling recognition of the structure of the non‐linear constitutive material model and its coefficients in global space using global response information, e.g. load vs deflection data, obtained from the structural test. Genetic programming is used to recognize the structure of the non‐linear stress–strain relationship without any assumption in advance and the genetic algorithm is then used to recognize its coefficients. The non‐linear stress–strain relationship thus found can not only satisfy the dynamic change in its structure but also its variables and coefficients. Non‐linear finite element analysis is used to transfer the load–deflection information to the stress–strain data. The potential of the proposed method is demonstrated by applying it to the macro‐mechanical modelling of the non‐linear behaviour of composite materials. A non‐linear material model for the unidirectional ply is recognized by using experimental data of a lamina plate [(±45)6]s. The obtained non‐linear constitutive model gave good predictions in coincidence with the non‐linear behaviours of the [(±30)6]s, [(0/±45)3]s and [(0/±45)4]s plates. The results indicate that the coupling non‐linear constitutive model of the structure and its coefficients can identify the model which the traditional constitutive model theory is unable to recognize. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A transient wear process on frictional interface of two thermo‐elastic bodies in a relative steady sliding motion induces shape evolution of contact interface and tends to a steady state for which the wear process occurs at fixed contact stress and strain distribution. The temperature field generated by frictional and wear dissipation on the contact surface is assumed to reach a steady state. This state is assumed to correspond to minimum of the wear dissipation power and the temperature field corresponds to maximum of the heat entropy production. The stationarity conditions of the response functionals provide the contact pressure distribution and the corresponding temperature field. The present approach extends the authors previous analyses of optimal or steady‐state contact shapes by accounting for coupled wear and thermal distortion effects. The wear rule is assumed as a non‐linear relation of wear rate to shear stress and relative sliding velocity. The analysis of disk and drum brakes is presented with account for thermal distortion effect. It is shown that the contact shape in a steady thermo‐elastic state essentially differs from that specified for mechanical loading with neglect of thermal effects. The thermal instability regimes are not considered in the paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
通过定义接触单元, 建立了复合材料套管接头与钢管连接的有限元分析模型。分析了在钢管端部受到弯曲、压缩和扭转载荷条件下, 复合材料管接头的应力状态, 并采用Tsai-Wu 强度准则对复合材料管接头进行了强度分析。重点研究了随着摩擦系数的变化复合材料管接头与钢管间摩擦力的变化规律及其对复合材料接头强度的影响。结果表明, 随着摩擦系数的增大, 复合材料管接头与钢管间最大正应力减小, 最大摩擦力增大; 在以弯曲载荷为主的组合载荷作用下, 复合材料管接头的安全裕度增大。   相似文献   

6.
Moving from the seminal papers of Han and Reddy, we propose a fixed‐point algorithm for the solution of hardening plasticity two‐dimensional problems. The continuous problem may be classified as a mixed non‐linear non‐differentiable variational inequality of the second type and is discretized by means of a truly mixed finite‐element scheme. One of the main peculiarities of our approach is the use of the composite triangular element of Johnson and Mercier for the approximation of the stress field. The non‐differentiability is coped with via regularization whereas the non‐linearity is approached with a fixed‐point iterative strategy. Numerical results are proposed that investigate the sensitivity of the approach with respect to the mesh size and the regularization parameter ε. The simplicity of the proposed fixed‐point scheme with respect to more classical return mapping approaches seems to represent one of the key features of our algorithm. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Although ceramics are considered linear elastic materials, we have observed a non‐linear pseudo‐elastic behavior in porous cellular microcracked ceramics such as β‐eucryptite. This is attributed to the evolution of microstructure in these materials. This behavior is particularly different from that of non‐microcracked ceramics such as silicon carbide. It is shown that in microcracked materials two processes, namely stiffening and softening, always compete when a compressive external load is applied. The first regime is attributed to microcrack closure, and the second to microcracks opening, i.e. to a damage introduced by the applied stress. On the other hand rather a continuous damage is observed in the non‐microcracked case. A comparison has been done between the microscopic (as measured by neutron diffraction) and the macroscopic stress‐strain response. Also, it has been found that at constant load a significant strain relaxation occurs, which has two timescales, possibly driven by the two phenomena quoted above. Indeed, no such relaxation is observed for non‐microcracked SiC. Implications of these findings are discussed.  相似文献   

8.
This paper presents an enriched meshless method for fracture analysis of cracks in homogeneous, isotropic, non‐linear‐elastic, two‐dimensional solids, subject to mode‐I loading conditions. The method involves an element‐free Galerkin formulation and two new enriched basis functions (Types I and II) to capture the Hutchinson–Rice–Rosengren singularity field in non‐linear fracture mechanics. The Type I enriched basis function can be viewed as a generalized enriched basis function, which degenerates to the linear‐elastic basis function when the material hardening exponent is unity. The Type II enriched basis function entails further improvements of the Type I basis function by adding trigonometric functions. Four numerical examples are presented to illustrate the proposed method. The boundary layer analysis indicates that the crack‐tip field predicted by using the proposed basis functions matches with the theoretical solution very well in the whole region considered, whether for the near‐tip asymptotic field or for the far‐tip elastic field. Numerical analyses of standard fracture specimens by the proposed meshless method also yield accurate estimates of the J‐integral for the applied load intensities and material properties considered. Also, the crack‐mouth opening displacement evaluated by the proposed meshless method is in good agreement with finite element results. Furthermore, the meshless results show excellent agreement with the experimental measurements, indicating that the new basis functions are also capable of capturing elastic–plastic deformations at a stress concentration effectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
In a companion paper, the effects of approximations in the flexural‐torsional stability analysis of beams was studied, and it was shown that a second‐order rotation matrix was sufficiently accurate for a flexural‐torsional stability analysis. However, the second‐order rotation matrix is not necessarily accurate in formulating finite element model for a 3‐D non‐linear analysis of thin‐walled beams of open cross‐section. The approximations in the second‐order rotation matrix may introduce ‘self‐straining’ due to superimposed rigid‐body motions, which may lead to physically incorrect predictions of the 3‐D non‐linear behaviour of beams. In a 3‐D non‐linear elastic–plastic analysis, numerical integration over the cross‐section is usually used to check the yield criterion and to calculate the stress increments, the stress resultants, the elastic–plastic stress–strain matrix and the tangent modulus matrix. A scheme of the arrangement of sampling points over the cross‐section that is not consistent with the strain distributions may lead to incorrect predictions of the 3‐D non‐linear elastic–plastic behaviour of beams. This paper investigates the effects of approximations on the 3‐D non‐linear analysis of beams. It is found that a finite element model for 3‐D non‐linear analysis based on the second‐order rotation matrix leads to over‐stiff predictions of the flexural‐torsional buckling and postbuckling response and to an overestimate of the maximum load‐carrying capacities of beams in some cases. To perform a correct 3‐D non‐linear analysis of beams, an accurate model of the rotations must be used. A scheme of the arrangement of sampling points over the cross‐section that is consistent with both the longitudinal normal and shear strain distributions is needed to predict the correct 3‐D non‐linear elastic–plastic behaviour of beams. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
《Mauerwerk》2017,21(6):385-390
The structural stability of unreinforced masonry (URM) walls has to be guaranteed not only under static (permanent and live) loads but also under earthquake loads. Loads transverse to the plane (out‐of‐plane) often have a decisive influence on the load‐bearing capacity. In practical applications, simplified methods from codes, guidelines and literature are often used to analyse and evaluate the out‐of‐plane capacity of load‐bearing and non‐load‐bearing URM walls. The results of these simplified methods can be significantly conservative and inaccurate since essential influencing effects are neglected. For many existing buildings, the simplified methods underestimate the capacity, which leads to cost‐intensive retrofitting and strengthening measures or complete replacement by other wall systems. In order to realistically estimate the out‐of‐plane capacity, parameters such as wall geometry, boundary conditions, vertical loads and especially dynamic effects (e.g. inertia forces) have to be taken into account. In this paper, non‐linear time history simulations are presented to investigate the influence of these effects. The numerically determined maximum acceptable earthquake acceleration is compared with results from simplified analysis models. The comparison shows that the out‐of‐plane capacity is significantly higher than the values predicted by simplified models. Finally, several initial experimental seismic tests conducted on the shaking table of the TU Kaiserslautern are presented, together with the planned extensive experimental test program on the out‐of‐plane capacity of masonry walls.  相似文献   

11.
《Mauerwerk》2017,21(5):320-331
Dedicated to Prof. Dr.‐Ing. Carl‐Alexander Graubner on the occasion of his 60th birthday Masonry members have to resist vertical loads and bending moments about the weak axis due to rotation of adjacent slabs. If the compression member is part of the bracing system, there are also bending moments about the strong axis. This paper deals with the load‐bearing capacity of biaxially eccentrically compressed unreinforced compression members with rectangular cross‐sections. For linear‐elastic material, the principles of an analytical model is presented, which considers geometrical and physical (cracking) non‐linearity. The deflections of the wall can be determined by using moment‐curvature relations, making possible the analytical analysis of compression members considering the effects of 2nd order theory. For a non‐linear stress‐strain relation, the calculation of the load carrying capacity of rectangular compression members under biaxial bending is complex and has to be determined numerically. The good accordance of the results of the analytical model with the numeric calculations is also shown for various eccentricities. In addition, a simplified proposal for the calculation of the load‐bearing capacity of biaxially eccentrically compressed unreinforced compression members is shown. The proposal is based on the load‐bearing capacity of uniaxially eccentrically compressed unreinforced compression members. Therefore it is possible to use the proposal considering existing models, for example according to Eurocode 2 or 6.  相似文献   

12.
The use of adhesively bonded joints in industrial structures requires reliable tools for the estimation of the failure load. The necessary and sufficient condition to predict the strength of such joints involves the implementation of a coupled stress and energetic criteria. However, its application necessitates the identification of the stress distribution along the adhesive layer, which has been approximated in this paper by a previously published closed‐form solution. This analysis along with finite element modelling results are compared with experimental data issued from a double‐notched sample tested with the Arcan fixture at various load ratios. The results show good agreement; the use of the closed‐form solution permitted to predict the failure load more rapidly and in a conservative manner compared with the experimental results. The application of the methodology is also extended to a wider range of joint geometries by means of spatial interpolation using the Kriging model.  相似文献   

13.
An active control of the load‐bearing capacity of slender bridges is treated in the present paper. Interactive conditions in ultimate response are considered. A numerical treatment of the occurring/appearing non‐linear problems is made using the updated Lagrangian formulation of motion. Each step of the iteration approaches the solution of linear problem and the feasibility of the parallel processing FETM‐technique with adaptive mesh refinement and substructuring for the analysis of ultimate behaviour of bridges is established. Application to an actual bridge is submitted in order to demonstrate the efficiency of the procedures suggested. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The present work is devoted to the damped Newton method applied for solving a class of non‐linear elasticity problems. Following the approach suggested in earlier related publications, we consider a two‐level procedure which involves (i) solving the non‐linear problem on a coarse mesh, (ii) interpolating the coarse‐mesh solution to the fine mesh, (iii) performing non‐linear iterations on the fine mesh. Numerical experiments suggest that in the case when one is interested in the minimization of the L2‐norm of the error rather than in the minimization of the residual norm the coarse‐mesh solution gives sufficiently accurate approximation to the displacement field on the fine mesh, and only a few (or even just one) of the costly non‐linear iterations on the fine mesh are needed to achieve an acceptable accuracy of the solution (the accuracy which is of the same order as the accuracy of the Galerkin solution on the fine mesh). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
A fatigue damage model to assess the development of subsurface fatigue cracks in railway wheels is presented in this paper. A 3‐dimensional finite element model (FEM) is constructed to simulate repeated cycles of contact loading between a railway wheel and a rail. The computational approach includes a hard‐contact over‐closure relationship and an elastoplastic material model with isotropic and kinematic hardening. Results from the simulation are used in a multiaxial critical‐plane fatigue damage analysis. The employed strain‐based critical‐plane fatigue damage approach is based on Fatemi‐Socie fatigue index that takes into account the non‐proportional and out‐of‐phase nature of the multiaxial state of stress occurs when a railway wheel rolls on a rail. It predicts fatigue‐induced micro‐crack nucleation at a depth of about 3.7 mm beneath the wheel tread, as well as the crack plane growth orientation which indicates the possible failure pattern. Additionally, the influence of various factors such as contribution of normal stresses, higher wheel load, and material model have been investigated.  相似文献   

16.
A new two‐level multiscale enrichment methodology for analysis of heterogeneous plates is presented. The enrichments are applied in the displacement and strain levels: the displacement field of a Reissner–Mindlin plate is enriched using the multiscale enrichment functions based on the partition of unity principle; the strain field is enriched using the mathematical homogenization theory. The proposed methodology is implemented for linear and failure analysis of brittle heterogeneous plates. The eigendeformation‐based model reduction approach is employed to efficiently evaluate the non‐linear processes in case of failure. The capabilities of the proposed methodology are verified against direct three‐dimensional finite element models with full resolution of the microstructure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Uniaxial compression tests combined with nondestructive testing techniques are performed to explore the roles of non‐isometric flaws in crack developments in brittle rocks. The acoustic emission (AE) rate‐process theory is adopted to analyze fracture‐related AE event rate characteristics. The full‐field optical method is applied to detect cracking modes. Experimental results show that AE activity is quite active when the matrix microcracking is dominant, while after each macrocracking event, AE activity becomes inactive because of the stress release. Multiphysical data for each tested flaw configuration faithfully confirm the rupture progressivity. The larger the flaw length ratio, the lower the peak stress (also peak axial strain and elastic modulus), as well as the more progressive the cracking process. Moreover, ultimate failure is triggered by the shear fracturing from the relatively long flaw. The short flaw is conditionally involved in ultimate failure when the stress buildup effect dominates. Finally, the fracture mechanism of brittle rocks with non‐isometric flaws is revealed.  相似文献   

18.
We present in this paper an efficient and accurate low‐order solid‐shell element formulation for analyses of large deformable multilayer shell structures with non‐linear materials. The element has only displacement degrees of freedom (dofs), and an optimal number of enhancing assumed strain (EAS) parameters to pass the patch tests (both membrane and out‐of‐plane bending) and to remedy volumetric locking. Based on the mixed Fraeijs de Veubeke‐Hu‐Washizu (FHW) variational principle, the in‐plane and out‐of‐plane bending behaviours are improved and the locking associated with (nearly) incompressible materials is avoided via a new efficient enhancement of strain tensor. Shear locking and curvature thickness locking are resolved effectively by using the assumed natural strain (ANS) method. Two non‐linear 3‐D constitutive models (Mooney–Rivlin material and hyperelastoplastic material at finite strain) are applied directly without requiring the enforcement of the plane‐stress assumption. In particular, we give a simple derivation for the hyperelastoplastic model using spectral representations. In addition, the present element has a well‐defined lumped mass matrix, and provides double‐side contact surfaces for shell contact problems. With the dynamics referred to a fixed inertial frame, the present element can be used to analyse multilayer shell structures undergoing large overall motion. Numerical examples involving static analyses and implicit/explicit dynamic analyses of multilayer shell structures with both material and geometric non‐linearities are presented, and compared with existing results obtained from other shell elements and from a meshless method. It is shown that elements that did not pass the out‐of‐plane bending patch test could not provide accurate results, as compared to the present element formulation, which passed the out‐of‐plane bending patch test. The present element proves to be versatile and efficient in the modelling and analyses of general non‐linear composite multilayer shell structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The fatigue crack propagation in a friction stir‐welded sample has been simulated herein by means of two 3‐dimensional finite element method (FEM)‐based analyses. Numerical simulations of the fatigue crack propagation have been carried out by assuming a residual stress field as a starting condition. Two initial cracks, observed in the real specimen, have been assessed experimentally by performing fatigue tests on the welded sample. Hence, the same cracks have been placed in the corresponding FE model, and then a remote load with boundary conditions has been applied on the welded specimen. The material behaviour of the welded joint has been modelled by means of the Ramberg‐Osgood equation, while the non‐linear Kujawski‐Ellyin (KE) model has been adopted for the fatigue crack propagation under small‐scale yielding (SSY) conditions. Owing to the compressive nature of the residual stress field that acts on a part of the cracked regions, the crack closure phenomenon has also been considered. Then, the original version of the KE law has been modified to fully include the closure effect in the analysis. Later, the crack closure effect has also been assessed in the simulation of fatigue propagation of three cracks. Finally, an investigation of the fracture process zone (FPZ) extension as well as the cyclic plastic zone (CPZ) and monotonic plastic zone (MPZ) extensions have been assessed.  相似文献   

20.
This work deals with the investigation of the non‐linear instability behaviour of the composite laminates subjected to periodic in‐plane/axial load, through the finite element formulation with dynamic response analysis. Here, C1 eight‐noded shear‐flexible plate element, based on a new kind of kinematics which allows to exactly ensure the continuity conditions for displacements and stresses at the interfaces between the layers of the laminate, and also the boundary conditions at the top and bottom surfaces of the laminate, is employed. The non‐linear governing equations obtained are solved using the Newmark direct integration method coupled with a modified Newton–Raphson iteration procedure. The analysis brings out various characteristic features of the dynamic stability such as existence of beats, their dependency on the forcing frequency, and the typical character of vibrations in the different regions. Numerical results are also presented to highlight the influence of ply‐angle and lay‐up of the laminate on dynamic stability behaviour of the composite laminates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号