首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly flexible and transparent transistor is developed based on an exfoliated MoS2 channel and CVD‐grown graphene source/drain electrodes. Introducing the 2D nanomaterials provides a high mechanical flexibility, optical transmittance (~74%), and current on/off ratio (>104) with an average field effect mobility of ~4.7 cm2 V?1 s?1, all of which cannot be achieved by other transistors consisting of a MoS2 active channel/metal electrodes or graphene channel/graphene electrodes. In particular, a low Schottky barrier (~22 meV) forms at the MoS2/graphene interface, which is comparable to the MoS2/metal interface. The high stability in electronic performance of the devices upon bending up to ±2.2 mm in compressive and tensile modes, and the ability to recover electrical properties after degradation upon annealing, reveal the efficacy of using 2D materials for creating highly flexible and transparent devices.  相似文献   

2.
3.
MoS2, one of the most valued 2D materials beyond graphene, shows potential for future applications in postsilicon digital electronics and optoelectronics. However, achieving hole transport in MoS2, which is dominated by electron transport, is always a challenge. Here, MoS2 transistors gated by electrolyte gel exhibit the characteristics of hole and electron transport, a high on/off ratio over 105, and a low subthreshold swing below 50 mV per decade. Due to the electrolyte gel, the density of electrons and holes in the MoS2 channel reaches ≈9 × 1013 and 8.85 × 1013 cm?2, respectively. The electrolyte gel‐assisted MoS2 phototransistor exhibits adjustable positive and negative photoconductive effects. Additionally, the MoS2 p–n homojunction diode affected by electrolyte gel shows high performance and a rectification ratio over 107. These results demonstrate that modifying the conductance of MoS2 through electrolyte gel has great potential in highly integrated electronics and optoelectronic photodetectors.  相似文献   

4.
5.
H Wang  L Yu  YH Lee  Y Shi  A Hsu  ML Chin  LJ Li  M Dubey  J Kong  T Palacios 《Nano letters》2012,12(9):4674-4680
Two-dimensional (2D) materials, such as molybdenum disulfide (MoS(2)), have been shown to exhibit excellent electrical and optical properties. The semiconducting nature of MoS(2) allows it to overcome the shortcomings of zero-bandgap graphene, while still sharing many of graphene's advantages for electronic and optoelectronic applications. Discrete electronic and optoelectronic components, such as field-effect transistors, sensors, and photodetectors made from few-layer MoS(2) show promising performance as potential substitute of Si in conventional electronics and of organic and amorphous Si semiconductors in ubiquitous systems and display applications. An important next step is the fabrication of fully integrated multistage circuits and logic building blocks on MoS(2) to demonstrate its capability for complex digital logic and high-frequency ac applications. This paper demonstrates an inverter, a NAND gate, a static random access memory, and a five-stage ring oscillator based on a direct-coupled transistor logic technology. The circuits comprise between 2 to 12 transistors seamlessly integrated side-by-side on a single sheet of bilayer MoS(2). Both enhancement-mode and depletion-mode transistors were fabricated thanks to the use of gate metals with different work functions.  相似文献   

6.
Phosphorus doped(P-doped) nanogranular SiO2 films have been deposited by plasma-enhanced chemical vapor deposition. A high proton conductivity of ~3.2x10-4S/cm and a large electric double layer(EDL) capacitance of ~3.2μF/cm2 have been obtained. Flexible coplanar-gate EDL thin film transistors(TFTs) gated by P-doped nanogranular SiO2 films are self-assembled on plastic substrates at room temperature. Due to the big EDL capacitance,such TFTs show ultra-low voltage operation of 1 V,a large field-effect mobility of 18.9 cm2/Vs,a small subthreshold swing of 85 m V/decade and a high current on/off ratio of 107. Furthermore,the EDL TFT could work in dual coplanar gate mode. AND logic operation is realized. Our results demonstrate that such TFTs gated by P-doped nanogranular SiO2 films have potential applications in low-power flexible electronics.  相似文献   

7.
Tong  Xin  Ashalley  Eric  Lin  Feng  Li  Handong  Wang  Zhiming M. 《纳微快报(英文)》2015,7(3):203-218
Nano-Micro Letters - This paper reviews the original achievements and advances regarding the field effect transistor (FET) fabricated from one of the most studied transition metal dichalcogenides:...  相似文献   

8.
9.
10.
As Moore's law is running to its physical limit, tomorrow's electronic systems can be leveraged to a higher value by integrating “More than Moore” technologies into CMOS digital circuits. The hybrid heterostructure composed of two-dimensional (2D) semiconductors and molecular materials represents a powerful strategy to confer new properties to the former components, realize stimuli-responsive functional devices, and enable diversification in “More than Moore” technologies. Here, an ionic liquid (IL) gated 2D MoS2 field-effect transistor (FET) with molecular functionalization is fabricated. The suitably designed ferrocene-substituted alkanethiol molecules not only improve the FET performance, but also show reversible electrochemical switching on the surface of MoS2. Field-effect mobility of monolayer MoS2 reaches values as high as ≈116 cm2 V−1 s−1 with Ion/Ioff ratio exceeding 105. Molecules in their neutral or charged state impose distinct doping effect, efficiently tuning the electron density in monolayer MoS2. It is noteworthy that the joint doping effect from IL and switchable molecules results in the steep subthreshold swing of MoS2 FET in the backward sweep. These results demonstrate that the device architecture represents an unprecedented and powerful strategy to fabricate switchable 2D FET with a chemically programmed electrochemical signal as a remote control, paving the road toward novel functional devices.  相似文献   

11.
The increasing interest in flexible and wearable electronics has demanded a dramatic improvement of mechanical robustness in electronic devices along with high-resolution implemented architectures. In this study, a site-specific stress-diffusive manipulation is demonstrated to fulfill highly robust and ultraflexible amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) and integrated circuits. The photochemically activated combustion sol–gel a-IGZO TFTs on a mesa-structured polyimide show an average saturation mobility of 6.06 cm2 V−1 s−1 and a threshold voltage of −0.99 V with less than 9% variation, followed by 10 000 bending cycles with a radius of 125 μm. More importantly, the site-specific monolithic formation of mesa pillar-structured devices can provide fully integrated logic circuits such as seven-stage ring-oscillators, meeting the industrially needed device density and scalability. To exploit the underlying stress-diffusive mechanism, a physical model is provided by using a variety of chemical, structural, and electrical characterizations along with multidomain finite-element analysis simulation. The physical models reveal that a highly scalable and robust device can be achieved via the site-specific mesa architecture, by enabling generation of multineutral layers and fine-tuning the accumulated stresses on specific element of devices with their diffusion out into the boundary of the mesa regions.  相似文献   

12.
Flexible dielectrics operable under simultaneous electric and thermal extremes are critical to advanced electronics for ultrahigh densities and/or harsh conditions. However, conventional high-performance polymer dielectrics generally have conjugated aromatic backbones, leading to limited bandgaps and hence high conduction loss and poor energy densities, especially at elevated temperatures. A polyoxafluoronorbornene is reported, which has a key design feature in that it is a polyolefin consisting of repeating units of fairly rigid fused bicyclic structures and alkenes separated by freely rotating single bonds, endowing it with a large bandgap of ≈5 eV and flexibility, while being temperature-invariantly stable over −160 to 160 °C. At 150 °C, the polyoxafluoronorbornene exhibits an electrical conductivity two orders of magnitude lower than the best commercial high-temperature polymers, and features an unprecedented discharged energy density of 5.7 J cm−3 far outperforming the best reported flexible dielectrics. The design strategy uncovered in this work reveals a hitherto unexplored space for the design of scalable and efficient polymer dielectrics for electrical power and electronic systems under concurrent harsh electrical and thermal conditions.  相似文献   

13.
2D semiconductors are promising channel materials for field‐effect transistors (FETs) with potentially strong immunity to short‐channel effects (SCEs). In this paper, a grain boundary widening technique is developed to fabricate graphene electrodes for contacting monolayer MoS2. FETs with channel lengths scaling down to ≈4 nm can be realized reliably. These graphene‐contacted ultrashort channel MoS2 FETs exhibit superior performances including the nearly Ohmic contacts and excellent immunity to SCEs. This work provides a facile route toward the fabrication of various 2D material‐based devices for ultrascaled electronics.  相似文献   

14.
The threshold voltage (Vth) adjustment of complementary metal-oxide-semiconductor (CMOS) thin film transistors (TFTs) is one of the research hotspots due to its key role in energy consumption control of CMOS circuits. Here, ultralow-power flexible CMOS circuits based on well-matched enhancement-mode (E-mode) CMOS single-walled carbon nanotube (SWCNT) TFTs are successfully achieved through tuning the work function of gate electrodes, electron doping, and printing techniques. E-mode P-type CMOS SWCNT TFTs with the full-solution procedure are first obtained through decreasing the work function of Ag gate electrodes directly caused by the deposition of bismuth iodide (BiI3)-doped solid-state electrolyte dielectrics. After synthetic optimization of dielectric compositions and semiconductor printing process, the flexible printed E-mode SWCNT TFTs show the high Ion/Ioff ratios of ≈106, small subthreshold swing (SS) of 70–85 mV dec−1, low operating voltages of ≈0.5 to −1.5 V, good stability and excellent mechanical flexibility during 10 000 bending cycles. E-mode N-type SWCNT TFTs are then selectively achieved via printing the polarity conversion ink (2-Amino-2-methyl-1-propanol (AMP)  as electron  doping agent) in P- type TFT channels. Last, printed SWCNT CMOS inverters are successfully constructed with full rail-to-rail output characteristics and the record unit static power consumption of 6.75 fW µm−1 at VDD of 0.2 V.  相似文献   

15.
16.
17.
18.
Recently, 2D materials exhibit great potential for humidity sensing applications due to the fact that almost all atoms are at the surface. Therefore, the quality of the material surface becomes the key point for sensitive perception. This study reports an integrated, highly sensitive humidity sensors array based on large‐area, uniform single‐layer molybdenum disulfide with an ultraclean surface. Device mobilities and on/off ratios decrease linearly with the relative humidity varying from 0% to 35%, leading to a high sensitivity of more than 104. The reversible water physisorption process leads to short response and decay times. In addition, the device array on a flexible substrate shows stable performance, suggesting great potential in future noncontact interface localization applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号