首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We investigate the performance of distributed admission control with quality of service (QoS) provisioning and dynamical channel allocation for mobile/wireless networks where the co-channel reuse distance is considered as the only limiting factor to channel sharing. We first provide a QoS metric feasible for admission control with dynamically allocated channels. We then derive a criterion analytically using the QoS measure for distributed call admission control with dynamic channel allocation (DCA). When maximum packing is used as the DCA scheme, the results obtained are independent of any particular algorithm that implements dynamic channel assignments. Our results, thereby, provide the optimal performance achievable for the distributed admission control with the QoS provisioning by the best DCA scheme in the given setting  相似文献   

2.
As channel allocation schemes become more complex and computationally demanding in cellular radio networks, alternative computational models that provide the means for faster processing time are becoming the topic of research interest. These computational models include knowledge-based algorithms, neural networks, and stochastic search techniques. This paper is concerned with the application of a Hopfield (1982) neural network (HNN) to dynamic channel allocation (DCA) and extends previous work that reports the performance of HNN in terms of new call blocking probability. We further model and examine the effect on performance of traffic mobility and the consequent intercell call handoff, which, under increasing load, can force call terminations with an adverse impact on the quality of service (QoS). To maintain the overall QoS, it is important that forced call terminations be kept to a minimum. For an HNN-based DCA, we have therefore modified the underlying model by formulating a new energy function to account for the overall channel allocation optimization, not only for new calls but also for handoff channel allocation resulting from traffic mobility. That is, both new call blocking and handoff call blocking probabilities are applied as a joint performance estimator. We refer to the enhanced model as HNN-DCA++. We have also considered a variation of the original technique based on a simple handoff priority scheme, here referred to as HNN-DCA+. The two neural DCA schemes together with the original model are evaluated under traffic mobility and their performance compared in terms of new-call blocking and handoff-call dropping probabilities. Results show that the HNN-DCA++ model performs favorably due to its embedded control for assisting handoff channel allocation  相似文献   

3.
In this paper, we address the call admission control (CAC) problem in a cellular network that handles several classes of traffic with different resource requirements. The problem is formulated as a semi‐Markov decision process (SMDP) problem. We use a real‐time reinforcement learning (RL) [neuro‐dynamic programming (NDP)] algorithm to construct a dynamic call admission control policy. We show that the policies obtained using our TQ‐CAC and NQ‐CAC algorithms, which are two different implementations of the RL algorithm, provide a good solution and are able to earn significantly higher revenues than classical solutions such as guard channel. A large number of experiments illustrates the robustness of our policies and shows how they improve quality of service (QoS) and reduce call‐blocking probabilities of handoff calls even with variable traffic conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Resource allocation and call admission control (CAC) are key management functions in future cellular networks, in order to provide multimedia applications to mobiles users with quality of service (QoS) guarantees and efficient resource utilization. In this paper, we propose and analyze a priority based resource sharing scheme for voice/data integrated cellular networks. The unique features of the proposed scheme are that 1) the maximum resource utilization can be achieved, since all the leftover capacity after serving the high priority voice traffic can be utilized by the data traffic; 2) a Markovian model for the proposed scheme is established, which takes account of the complex interaction of voice and data traffic sharing the total resources; 3) optimal CAC parameters for both voice and data calls are determined, from the perspective of minimizing resource requirement and maximizing new call admission rate, respectively; 4) load adaption and bandwidth allocation adjustment policies are proposed for adaptive CAC to cope with traffic load variations in a wireless mobile environment. Numerical results demonstrate that the proposed CAC scheme is able to simultaneously provide satisfactory QoS to both voice and data users and maintain a relatively high resource utilization in a dynamic traffic load environment. The recent measurement-based modeling shows that the Internet data file size follows a lognormal distribution, instead of the exponential distribution used in our analysis. We use computer simulations to demonstrate that the impact of the lognormal distribution can be compensated for by conservatively applying the Markovian analysis results.  相似文献   

5.
The CAC (call admission control), which can guarantee call services to meet their QoS (Quality of Service) requirements, plays a significant role in providing QoS in wireless mobile networks. In this paper, an adaptive multiguard channel scheme‐based CAC strategy is proposed to prioritize traffic types and handoff calls. The major aim of the study is to develop the analytical model of the priority traffic and handoff calls based adaptive multiguard channel scheme and examining the performance through setting the value of the adaptive ratio parameters. Our proposed scheme tries to mediate the advantages and drawbacks of the static and dynamic CAC schemes. The proposed scheme is quite different from previous studies because multithreshold values have been considered for multiclass traffic by adaption parameters, and a closed form analytical model is developed The numerical results show that this scheme can be used to keep the targeted QoS requirement by suitably setting the adaptive ratio parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we investigate call admission control (CAC) schemes that can jointly provide connection-level quality-of-service (QoS) (in terms of the new call blocking probability and the handoff dropping probability) and packet-level QoS (in terms of the packet loss probability) for wireless multimedia networks. Stationary CAC schemes are proposed as the results of the solution to constrained optimization problems. A dynamic CAC scheme that can be adapted to varied and varying traffic conditions dynamically is also proposed. The proposed CAC schemes are computationally efficient and easy to implement, thus being suitable for real-time system deployment. Simulation results have demonstrated that the proposed dynamic CAC scheme achieves better performance when applied to realistic traffic conditions found in wireless multimedia networks.  相似文献   

7.
This paper addresses when and how to adjust bandwidth allocation on uplink and downlink in a multi-service mobile wireless network under dynamic traffic load conditions. Our design objective is to improve system bandwidth utilization while satisfying call level QoS requirements of various call classes. We first develop a new threshold-based multi-service admission control scheme (DMS-AC) as the study base for bandwidth re-allocation. When the traffic load brought by some specific classes under dynamic traffic conditions in a system exceeds the control range of DMS-AC, the QoS of some call classes may not be guaranteed. In such a situation, bandwidth re-allocation process is activated and the admission control scheme will try to meet the QoS requirements under the adjusted bandwidth allocation. We explore the relationship between admission thresholds and bandwidth allocation by identifying certain constraints for verifying the feasibility of the adjusted bandwidth allocation. We conduct extensive simulation experiments to validate the effectiveness of the proposed bandwidth re-allocation scheme. Numerical results show that when traffic pattern with certain bandwidth asymmetry between uplink and downlink changes, the system can re-allocate the bandwidth on uplink and downlink adaptively and at the same time improve the system performance significantly.  相似文献   

8.
Both call admission control (CAC) and efficient scheduling are of great importance in next generation wireless networks, which are expected to handle various types of highly demanding multimedia users. In this paper, we present and evaluate a new mechanism which combines CAC with bandwidth allocation in a high-speed downlink time division multiple access (TDMA) wireless channel with errors; our mechanism incorporates predictions of the wireless channel condition in its decision making and our results show that, with the use of the feedback between the scheduler and the admission controller, system performance is significantly enhanced (in terms of voice-WAP-SMS-H.263 video QoS) compared to a scheme without prediction on the channel condition.  相似文献   

9.
无线移动网中呼叫接纳控制模型分析   总被引:7,自引:1,他引:6  
张雪 《通信学报》2005,26(8):99-109
新一代无线网应该能够同时支持传统的数据业务和实时交互式多媒体业务,并能够为用户提供QoS保证。在无线网中提供QoS保证,呼叫接纳控制扮演着重要的角色。对已有的呼叫接纳控制方面的研究成果进行了归纳、总结和分析,以期得出适合于无线移动多媒体网络的呼叫接纳控制模型。为适应当前的多媒体应用,侧重于对和适应性带宽分配相结合的接纳控制模型的分析。另外,介绍了与价格机制相结合的接纳控制模型,经济学概念的引入,为我们解决问题提供了一种新的视角。  相似文献   

10.
Frequent spotbeam handovers in low earth orbit (LEO) satellite networks require a technique to decrease the handover blocking probabilities. A large variety of schemes have been proposed to achieve this goal in terrestrial mobile cellular networks. Most of them focus on the notion of prioritized channel allocation algorithms. However, these schemes cannot provide the connection-level quality of service (QoS) guarantees. Due to the scarcity of resources in LEO satellite networks, a connection admission control (CAC) technique becomes important to achieve this connection-level QoS for the spotbeam handovers. In this paper, a geographical connection admission control (GCAC) algorithm is introduced, which estimates the future handover blocking performance of a new call attempt based on the user location database, in order to decrease the handover blocking. Also, for its channel allocation scheme, an adaptive dynamic channel allocation (ADCA) scheme is introduced. By simulation, it is shown that the proposed GCAC with ADCA scheme guarantees the handover blocking probability to a predefined target level of QoS. Since GCAC algorithm utilizes the user location information, performance evaluation indicates that the quality of service (QoS) is also guaranteed in the non-uniform traffic pattern.  相似文献   

11.
The General Packet Radio Service (GPRS) offers performance guaranteed packet data services to mobile users over wireless frequency-division duplex links with time division multiple access, and core packet data networks. This paper presents a dynamic adaptive guaranteed Quality-of-Service (QoS) provisioning scheme over GPRS wireless mobile links by proposing a guaranteed QoS media access control (GQ-MAC) protocol and an accompanying adaptive prioritized-handoff call admission control (AP-CAC) protocol to maintain GPRS QoS guarantees under the effect of mobile handoffs. The GQ-MAC protocol supports bounded channel access delay for delay-sensitive traffic, bounded packet loss probability for loss-sensitive traffic, and dynamic adaptive resource allocation for bursty traffic with peak bandwidth allocation adapted to the current queue length. The AP-CAC protocol provides dynamic adaptive prioritized admission by differentiating handoff requests with higher admission priorities over new calls via a dynamic multiple guard channels scheme, which dynamically adapts the capacity reserved for dealing with handoff requests based on the current traffic conditions in the neighboring radio cells. Integrated services (IntServ) QoS provisioning over the IP/ATM-based GPRS core network is realized over a multi-protocol label switching (MPLS) architecture, and mobility is supported over the core network via a novel mobile label-switching tree (MLST) architecture. End-to-end QoS provisioning over the GPRS wireless mobile network is realized by mapping between the IntServ and GPRS QoS requirements, and by extending the AP-CAC protocol from the wireless medium to the core network to provide a unified end-to-end admission control with dynamic adaptive admission priorities.  相似文献   

12.
This paper proposes a QoS approach for an adaptive call admission control (CAC) scheme for multiclass service wireless cellular networks. The QoS of the proposed CAC scheme is achieved through call bandwidth borrowing and call preemption techniques according to the priorities of the traffic classes, using complete sharing of the available bandwidth. The CAC scheme maintains QoS in each class to avoid performance deterioration through mechanisms for call bandwidth degradation, and call bandwidth upgrading based on min–max and max–min policies for fair resource deallocation and reallocation, respectively. The proposed adaptive CAC scheme utilizes a measurement‐based online monitoring approach of the system performance, and a prediction model to determine the amount of bandwidth to be borrowed from calls, or the amount of bandwidth to be returned to calls. The simulation‐based performance evaluation of the proposed adaptive CAC scheme shows the strength and effectiveness of our proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The role of call admission control (CAC) in high-speed networks is to maintain the network utilization at a high level, while ensuring that the quality of service (QoS) requirements of the individual calls are met. We use the term static CAC to describe schemes that always allocate the same bandwidth to a specific group of multiplexed calls, independent of the other traffic sharing the link. Dynamic CAC, on the other hand, denotes a scheme in which the bandwidth allocation to a group of calls sharing a queue is influenced by the traffic in other queues destined for the same outgoing link. We propose a generic dynamic call admission scheme for VBR and ABR traffic whose aim is to reduce the blocking rate for VBR calls at the expense of a higher blocking rate for ABR calls. Our scheme is generic because it builds up on a pre-existing static scheme, e.g., one based on a simple notion of effective bandwidth. Our simple approach results in a significant reduction of the blocking rate for VBR traffic (several orders of magnitude), if the bandwidth requirements of a single call are a reasonably small fraction of the link capacity. At the same time, the deterioration of service for ABR traffic can be contained. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
15.
WLAN中基于效用的呼叫接纳控制策略   总被引:3,自引:1,他引:2       下载免费PDF全文
陈明欣  刘干  朱光喜 《电子学报》2008,36(7):1429-1434
 为了在802.11的网络中提供服务质量(QoS)支持,IEEE 802.11 Task Group E提出了EDCF协议.然而EDCF只能提供业务区分服务,并不能提供服务质量(QoS)保证.为了能在重负载下提供QoS保证,在WLAN中加入呼叫接纳控制(CAC)机制是非常必要的.本文首先提出了一个新的3维Markov模型对非饱和状态下EDCF的吞吐量和平均接入时延进行了分析.并在此基础上,提出了一种基于效用函数的CAC策略,它可以使网络的总收益达到最大.最后通过大量仿真验证了所提出的CAC策略的有效性.  相似文献   

16.
一种优化无线多媒体业务接入允许控制和资源分配算法   总被引:1,自引:1,他引:1  
刘莉  荆涛  付立  冯玉珉 《信号处理》2007,23(3):343-347
无线网络中的多媒体业务具有很大吸引力。本文将多媒体业务分为实时业务和非实时业务,提出了一种呼叫接入控制优化算法CAC-RA,此算法通过采用马尔科夫方法,排队论和非线性规划模型,同时解决呼叫允许控制和资源优化分配问题。提出的利益函数考虑了最大利用资源,同时满足无线网络各类用户的QoS要求,同时尽量减少用户的资源重新分配的频率和幅度变化,仿真实验数据显示CAC-RA算法能较好地适应业务变化的网络,同时实现了较为理想的利益值,满足无线网络多媒体用户的QoS要求。  相似文献   

17.
3G动态预留呼叫接纳控制算法研究   总被引:3,自引:2,他引:1  
第三代移动通信技术支持不同服务质量(QoS)的多媒体业务,而呼叫接纳控制(CAC)技术是移动通信中的关键技术之一.本文提出一种动态预留呼叫接纳控制算法,该算法根据小区中各业务的话务量预测各业务所需信道教,从而为切换业务和新业务预留一定的信道.通过比较动态预留算法与新呼叫受限算法和中断优先级算法的性能,得出动态预留算法在降低语音和数据业务的呼叫阻塞率、中断率方面有明显的改善,是一种比较理想的呼叫接纳控制算法.  相似文献   

18.
The increasing variety and complexity of traffic in today's mobile wireless networks means that there are more restrictions placed on a network in order to guarantee the individual requirements of the different traffic types and users. Call admission control (CAC) plays a vital role in achieving this. In this paper, we propose a CAC scheme for multiple service systems where the predicted call usage of each service is used to make the admission decision. Our scheme enables real‐time traffic to be transmitted using shared bandwidth without quality of service (QoS) requirements being exceeded. This ensures that the utilization of the available wireless bandwidth is maximized. Information about the channel usage of each service is used to estimate the capacity of the cell in terms of the number of users that can achieve a certain bit error rate (BER). Priorities assigned to each service are used to allocate the network capacity. An expression for the handoff dropping probability is derived, and the maximum acceptance rate for each service that results in the estimated dropping probability not exceeding its QoS requirements is calculated. Each call is then accepted with equal probability throughout the duration of a control period. Achieved QoS during the previous control period is used to update the new call acceptance rates thus ensuring the dropping probability remains below the specified threshold. Simulations conducted in a wideband CDMA environment with conversational, streaming, interactive and background sources show that the proposed CAC can successfully meet the hard restraint on the dropping probability and guarantee the required BER for multiple services. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
We present a novel integrated analytical framework for analyzing the quality-of-service (QoS) performance measures in a wireless mobile multimedia network. The framework integrates physical, radio link, and network layer parameters and protocols to analyze the call-level and packet-level performances. In the network layer, call admission control (CAC) is responsible for deciding whether an incoming call can be accepted or not so that the performances of the ongoing calls do not deteriorate below the acceptable level. Also, an adaptive channel allocation (ACA) scheme is used to maximize the utilization of the radio resources. In the data link layer, queue management and error control are used for non-real-time loss-sensitive traffic. In the physical layer, a finite state Markov channel (FSMC) is used to model channel fading, and adaptive modulation is used for rate adaptation according to channel quality. Various call-level and packet-level QoS measures for real-time, non-real-time, and best-effort traffic are obtained. The analytical results are validated by extensive simulations. Examples of the applications of the presented analytical framework are also provided  相似文献   

20.
The next generation of mobile wireless networks has to provide the quality-of-service (QoS) for a variety of applications. One of the key generic QoS parameters is the call dropping probability, which has to be maintained at a predefined level independent of the traffic condition. In the presence of bursty data and the emerging multimedia traffic, an adaptive and dynamic bandwidth allocation is essential in ensuring this QoS. The paradox, however, is that all existing dynamic bandwidth allocation schemes require the prior knowledge of all traffic parameters or/and user mobility parameters. In addition, most proposals require extensive status information exchange among cells in order to dynamically readjust the control parameters, thus making them difficult to be used in actual deployment.In this paper, we introduce a novel adaptive bandwidth allocation scheme which estimates dynamically the changing traffic parameters through local on-line estimation. Such estimations are restricted to each individual cell, thus completely eliminating the signaling overhead for information exchange among cells. Furthermore, we propose the use of a probabilistic control policy, which achieves a high channel utilization, and leads to an effective and stable control. Through simulations, we show that our proposed adaptive bandwidth allocation scheme can guarantee the predetermined call dropping probability under changing traffic conditions while at the same time achieving a high channel utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号