首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 47 毫秒
1.
杨明奇  李占山  张家晨 《软件学报》2019,30(11):3355-3363
表约束是一种外延的知识表示方法,每个约束在对应的变量集上列举出所有支持或禁止的元组.广义弧相容(generalized arc consistency,简称GAC)是求解约束满足问题应用最广泛的相容性.Simple Tabular Reduction(STR)是一类高效的维持GAC的算法.在回溯搜索中,STR动态地删除无效元组,降低了查找支持的开销,并拥有单位时间的回溯代价,在高元表约束上获得了广泛运用,并有大量基于STR的改进算法被提出,其中,元组集的压缩表示是目前研究较多的方法.同样基于动态维持元组集有效部分的思想,为STR提出一种检测并删除无效元组和为变量更新支持的算法,作用于原始表约束并拥有单位时间的回溯代价.实验结果表明,该算法在表约束上维持GAC的效率普遍高于现有的非基于压缩表示的STR算法,并且在一些实例上的效率高于最新的基于元组集压缩表示的STR算法.  相似文献   

2.
本文给出了约束满足问题网络弧相容的两个并行算法PAC-1和PAC-2。  相似文献   

3.
陈佳楠  李哲  李占山 《软件学报》2021,32(9):2769-2782
并行传播是并行约束程序领域中的一个研究方向,其研究内容是如何并行执行在约束上的过滤算法.根据维持表约束网络广义弧相容(generalized arc consistency,简称GAC)的串行传播模式,提出了维持表约束网络临时广义弧相容(temporary generalized arc consistency,简称T...  相似文献   

4.
王震  李哲  李占山 《软件学报》2021,32(11):3530-3540
表约束在约束程序(constraint programming,简称CP)中被广泛研究.目前,求解表约束问题效率最高的算法是CT (compact-table)和STRbit (simple tabular reduction bit).它们在搜索过程中维持广义弧相容(generalized arc consistency,简称GAC).完全成对相容(full pairwise consistency,简称fPWC)是一种强于GAC的相容性关系,目前,实现fPWC效率最高的算法是PW-CT,但是它无法直接在通用的求解器上实现.因子分解编码(factor-decomposition encoding,简称FDE)是实现fPWC的一种编码方式,通常和简单表缩减(STR)算法一起来使用.当前效率最高的STR算法使用了bitset的数据结构,用这些算法来求解FDE实例可能会造成内存溢出.提出了STRFDE算法——一种使用bitset结构来求解FDE实例的方法.它结合了CT和STRbit的优势,在保证求解效率的同时,使占用的内存尽可能小.实验结果表明,在许多存在非平凡相交的实例上,该算法是有竞争力的.  相似文献   

5.
改进求解约束满足问题粗粒度弧相容算法   总被引:1,自引:3,他引:1  
李宏博  李占山  王涛 《软件学报》2012,23(7):1816-1823
约束满足问题在人工智能领域有着广泛的应用.研究了约束满足问题的粗粒度维持弧相容求解算法,发现在求解过程中,对于指向已赋值变量的弧存在无效的修正检查,证明了这类修正检查是冗余的.提出一种方法避免这类冗余的修正检查,给出改进后的粗粒度弧相容算法的基本框架AC3_frame_ARR,该改进框架可用于改进所有粗粒度弧相容算法.实验结果表明,经过AC3_frame_ARR改进后的算法最多可以节省80%的修正检查次数和40%的求解耗时.  相似文献   

6.
弧相容算法是约束满足问题的基本压缩求解空间算法之一,很多优秀的高级算法都以高性能的弧相容算法作为核心.近年来,以GPU为计算工具加速并行计算被用来尝试解决许多问题.基于GPU和基本的并行算法,提出一种适合GPU运算的约束网络表示模型N-E,给出其生成算法BuildNE.结合细粒度的弧相容算法——AC4,基于N-E模型提出AC4的并行化算法AC4\\+GPU与改进算法AC4\\+GPU+,使弧相容算法得以扩展到GPU上执行.实验结果验证了该算法的可行性,与AC4算法的比较,其在一些规模较小的问题上取得了10%~50%的加速,在一些规模较大的问题上则加速1~2个数量级.为今后进一步在GPU上以并行形式解决其他约束满足问题提供了一种核心算法方案.  相似文献   

7.
约束传播是约束编程的关键方法,近些年来,一些约束传播算法中频繁用到简单表缩减(simple tabular reduction, STR)算法来降低约束表的空间消耗,同时提高广义弧相容(generalised arc consistent, GAC)算法的运行速度.短支持方法是在约束传播算法中使用最广泛的一种表压缩方式,但当约束表压缩率较低时,短支持方法提高运行速度效果不明显.因此提出一种压缩约束表的新算法STRO(simple tabular reduction optimization),结合短支持压缩和位操作,在提高STR算法的运行速度的同时压缩表空间效果更好.实验结果表明:在约束表的平均大小不是特别小的情况下,STRO与ShortSTR2,STR2算法相比,速度更快、效率更高;与STRbit算法相比,在时间上可以替代STRbit算法,但STRO算法的表压缩率更大、更加节省空间.  相似文献   

8.
一种基于预处理技术的约束满足问题求解算法   总被引:4,自引:0,他引:4  
相容性技术作为约束满足问题的一种有效求解技术,不论是在求解前的预处理过程中,还是在搜索过程中,都扮演着极为重要的角色.文中对预处理阶段的相容性技术进行改进和信息抽取,提出两种应用于搜索过程中的新算法Pre-AC和Pre-AC*,并嵌入到BT框架中,形成新的搜索算法BT MPAC和BT MPAC*,给出了其正确性证明,通过复杂性分析得到Pre-AC和Pre-AC*的时间复杂度分别是O(nd)和O(ed2),明显低于目前最流行的弧相容技术的时间复杂度O(ed3).实验测试结果表明:对于不同类别的用例,新算法的执行效率是弧相容维护算法的2~50倍.  相似文献   

9.
李宏博  梁艳春  李占山 《软件学报》2015,26(12):3140-3150
研究了可用于求解约束满足问题的最大受限路径相容算法(maxRPC).maxRPC算法执行过程中有大量无效的寻找路径相容证明(PC-witness)的操作,有效地识别和避免这些无效的寻找PC-witness的操作,可以提高maxRPC算法的求解效率.首先,提出了在一条约束上任意两个相容的值在任意路径上存在PC-witness的概率;然后,基于这一概率提出了一种概率最大受限路径相容算法(PmaxRPC),并将新算法成功应用于求解约束满足问题的回溯搜索.实验结果显示:PmaxRPC可以避免一部分无效的寻找PC-witness的操作,在求解约束满足问题时,PmaxRPC效率高于maxRPC.在某些测试用例上,PmaxRPC比maxRPC和最流行的弧相容算法效率更高.  相似文献   

10.
针对一个具有精确可满足性相变现象的大值域随机约束满足问题,提出了两种启发式动态回溯算法,即基于动态度的ddeg-MAC(dynamic degree-maintaining arc consistency)回溯算法和基于值域与动态度比值的dom/ddeg-MAC(dom/dynamic degree-maintaining arc consistency)回溯算法。这两种算法分别基于ddeg和dom/ddeg挑选变量,利用维持弧相容(MAC)技术为挑选的变量进行赋值。当赋值无法进行时,再执行动态回溯修正变量的赋值。数值实验结果表明:在控制参数非常接近理论相变点时,算法仍然能够有效地找到问题的解。与经典回溯算法相比,这两种启发式动态回溯算法具有显著的优越性。  相似文献   

11.
A global cardinality constraint (gcc) is specified in terms of a set of variables X={x 1,...,x p} which take their values in a subset of V={v 1,...,v d}. It constrains the number of times each value v iV is assigned to a variable in X to be in an interval [l i,u i]. A gcc with costs (costgcc) is a generalization of a gcc in which a cost is associated with each value of each variable. Then, each solution of the underlying gcc is associated with a global cost equal to the sum of the costs associated with the assigned values of the solution. A costgcc constrains the global cost to be less than a given value. Cardinality constraints with costs have proved very useful in many real-life problems, such as traveling salesman problems, scheduling, rostering, or resource allocation. For instance, they are useful for expressing preferences or for defining constraints such as a constraint on the sum of all different variables. In this paper, we present an efficient way of implementing arc consistency for a costgcc. We also study the incremental behavior of the proposed algorithm.  相似文献   

12.
A constraint network is arc consistent if any value of any of its variables is compatible with at least one value of any other variable. The Arc Consistency Problem (ACP) consists in filtering out values of the variables of a given network to obtain one that is arc consistent, without eliminating any solution. ACP is known to be inherently sequential, or P-complete, so in this paper we examine some weaker versions of it and their parallel complexity. We propose several natural approximation schemes for ACP and show that they are also P-complete. In an attempt to overcome these negative results, we turn our attention to the problem of filtering out values from the variables so that each value in the resulting network is compatible with at least one value of not necessarily all, but a constant fraction of the other variables. We call such a network partially arc consistent. We give a parallel algorithm that, for any constraint network, outputs a partially arc consistent subnetwork of it in sublinear ( O( logn)) parallel time using O(n2) processors. This is the first (to our knowledge) sublinear-time parallel algorithm with polynomially many processors that guarantees that in the resulting network every value is compatible with at least one value in at least a constant fraction of the remaining variables. Finally, we generalize the notion of partiality to the k-consistency problem.  相似文献   

13.
Submodular function minimization is a polynomially solvable combinatorial problem. Unfortunately the best known general-purpose algorithms have high-order polynomial time complexity. In many applications the objective function is locally defined in that it is the sum of cost functions (also known as soft or valued constraints) whose arities are bounded by a constant. We prove that every valued constraint satisfaction problem with submodular cost functions has an equivalent instance on the same constraint scopes in which the actual minimum value of the objective function is rendered explicit. Such an equivalent instance is the result of establishing optimal soft arc consistency and can hence be found by solving a linear program. From a practical point of view, this provides us with an alternative algorithm for minimizing locally defined submodular functions. From a theoretical point of view, this brings to light a previously unknown connection between submodularity and soft arc consistency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号