首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Phosphorylation of Ser-627 is both necessary and sufficient for full activity of the expressed 35-kDa catalytic domain of myosin I heavy chain kinase (MIHCK). Ser-627 lies in the variable loop between highly conserved residues DFG and APE at a position at which a phosphorylated Ser/Thr also occurs in many other Ser/Thr protein kinases. The variable loop of MIHCK contains two other hydroxyamino acids: Thr-631, which is conserved in almost all Ser/Thr kinases, and Thr-632, which is not conserved. We determined the effects on the kinase activity of the expressed catalytic domain of mutating Ser-627, Thr-631, and Thr-632 individually to Ala, Asp, and Glu. The S627A mutant was substantially less active than wild type (wt), with a lower kcat and higher Km for both peptide substrate and ATP, but was more active than unphosphorylated wt. The S627D and S627E mutants were also less active than phosphorylated wt, i.e., acidic amino acids cannot substitute for phospho-Ser-627. The activity of the T631A mutant was as low as that of the S627A mutant, whereas the T632A mutant was as active as phosphorylated wt, indicating that highly conserved Thr-631, although not phosphorylated, is essential for catalytic activity. Asp and Glu substitutions for Thr-631 and Thr-632 were inhibitory to various degrees. Molecular modeling indicated that Thr-631 can hydrogen bond with conserved residue Asp-591 in the catalytic loop and that similar interactions are possible for other kinases whose activities also are regulated by phosphorylation in the variable loop. Thus, this conserved Thr residue may be essential for the activities of other Ser/Thr protein kinases as well as for the activity of MIHCK.  相似文献   

2.
The AMP-activated protein kinase is a heterotrimeric enzyme, important in cellular adaptation to the stress of nutrient starvation, hypoxia, increased ATP utilization, or heat shock. This mammalian enzyme is composed of a catalytic alpha subunit and noncatalytic beta and gamma subunits and is a member of a larger protein kinase family that includes the SNF1 kinase of Saccharomyces cerevisiae. In the present study, we have identified by truncation and site-directed mutagenesis several functional domains of the alpha1 catalytic subunit, which modulate its activity, subunit association, and protein turnover. C-terminal truncation of the 548-amino acid (aa) wild-type alpha1 protein to aa 312 or 392 abolishes the binding of the beta/gamma subunits and dramatically increases protein expression. The full-length wild-type alpha1 subunit is only minimally active in the absence of co-expressed beta/gamma, and alpha1(1-392) likewise has little activity. Further truncation to aa 312, however, is associated with a large increase in enzyme specific activity, thus revealing an autoinhibitory sequence between aa 313 and 392. alpha-1(1-312) still requires the phosphorylation of the activation loop Thr-172 for enzyme activity, yet is now independent of the allosteric activator, AMP. The increased levels of protein expression on transient transfection of either truncated alpha subunit cDNA are because of a decrease in enzyme turnover by pulse-chase analysis. Taken together, these data indicate that the alpha1 subunit of AMP-activated protein kinase contains several features that determine enzyme activity and stability. A constitutively active form of the kinase that does not require participation by the noncatalytic subunits provides a unique reagent for exploring the functions of AMP-activated protein kinase.  相似文献   

3.
We have developed a sensitive assay for the AMP-activated protein kinase kinase, the upstream component in the AMP-activated protein kinase cascade. Phosphorylation and activation of the downstream kinase by the upstream kinase absolutely requires AMP and is antagonized by high (millimolar) concentrations of ATP. We have purified the upstream kinase >1000-fold from rat liver; a variety of evidence indicates that the catalytic subunit may be a polypeptide of 58 kDa. The physical properties of the downstream and upstream kinases, e.g. catalytic subunit masses (63 versus 58 kDa) and native molecular masses (190 versus 195 kDa), are very similar. However, unlike the downstream kinase, the upstream kinase is not inactivated by protein phosphatases. The upstream kinase phosphorylates the downstream kinase at a single major site on the alpha subunit, i.e. threonine 172, which lies in the "activation segment" between the DFG and APE motifs. This site aligns with activating phosphorylation sites on many other protein kinases, including Thr177 on calmodulin-dependent protein kinase I. As well as suggesting a mechanism of activation of AMP-activated protein kinase, this finding is consistent with our recent report that the AMP-activated protein kinase kinase can slowly phosphorylate and activate calmodulin-dependent protein kinase I, at least in vitro (Hawley, S. A., Selbert, M. A., Goldstein, E. G., Edelman, A. M., Carling, D., and Hardie, D. G. (1995) J. Biol. Chem. 270, 27186-27191).  相似文献   

4.
BACKGROUND: Phosphorylation critically regulates the catalytic function of most members of the protein kinase superfamily. One such member, protein kinase C (PKC), contains two phosphorylation switches: a site on the activation loop that is phosphorylated by another kinase, and two autophosphorylation sites in the carboxyl terminus. For conventional PKC isozymes, the mature enzyme, which is present in the detergent-soluble fraction of cells, is quantitatively phosphorylated at the carboxy-terminal sites but only partially phosphorylated on the activation loop. RESULTS: This study identifies the recently discovered phosphoinositide-dependent kinase 1, PDK-1, as a regulator of the activation loop of conventional PKC isozymes. First, studies in vivo revealed that PDK-1 controls the amount of mature (carboxy-terminally phosphorylated) conventional PKC. More specifically, co-expression of the conventional PKC isoform PKC betaII with a catalytically inactive form of PDK-1 in COS-7 cells resulted in both the accumulation of non-phosphorylated PKC and a corresponding decrease in PKC activity. Second, studies in vitro using purified proteins established that PDK-1 specifically phosphorylates the activation loop of PKC alpha and betaII. The phosphorylation of the mature PKC enzyme did not modulate its basal activity or its maximal cofactor-dependent activity. Rather, the phosphorylation of non-phosphorylated enzyme by PDK-1 triggered carboxy-terminal phosphorylation of PKC, thus providing the first step in the generation of catalytically competent (mature) enzyme. CONCLUSIONS: We have shown that PDK-1 controls the phosphorylation of conventional PKC isozymes in vivo. Studies performed in vitro establish that PDK-1 directly phosphorylates PKC on the activation loop, thereby allowing carboxy-terminal phosphorylation of PKC. These data suggest that phosphorylation of the activation loop by PDK-1 provides the first step in the processing of conventional PKC isozymes by phosphorylation.  相似文献   

5.
The catalytic subunit of cAMP-dependent protein kinase radiolabeled with [35S]methionine in wild-type S49 mouse lymphoma cells was degraded with half-lives of approximately 9.2 h in unstimulated cells and approximately 4.5 h in cells stimulated with a membrane-permeable cAMP analog. Turnover in kinase-negative mutant cells was about three times faster than in stimulated wild-type cells and appeared to involve a unique 47-kDa intermediate. Levels of catalytic subunit protein revealed by Western immunoblotting were consistent with the measured differences in turnover, but whereas the protein was mostly soluble in wild-type cell extracts, it was almost entirely insoluble in the mutant cell extracts. A substantial fraction of the catalytic subunit labeled in a 5-min pulse was soluble in kinase-negative cell extracts, but most of this material was rendered insoluble by incubating the cells for an additional 30 min before extraction. Degradation of the catalytic subunit in kinase-negative, but not in wild-type, cells was inhibited strongly by two specific peptide aldehyde inhibitors of the proteasomal chymotrypsin-like activity. An inhibitor of the proteasomal protease that prefers branched-chain amino acids had less of an effect on catalytic subunit degradation in the mutant cells.  相似文献   

6.
7.
To identify the target amino acid for the cAMP-dependent phosphorylation of yeast 6-phosphofructo-2-kinase Ser644 was mutated to Ala. The plasmid-encoded wild-type and mutant enzymes were overexpressed in E. coli TG2 cells and in the yeast strain DFY658. Like the wild-type enzyme, the Ser644-->Ala mutant was phosphorylated in vivo after addition of glucose to yeast cells and in vitro by the catalytic subunit of protein kinase A. The specific activity of the mutant enzyme was 6-fold lower than that of the wild-type yeast 6-phosphofructo-2-kinase, but both enzymes were activated in response to the addition of glucose to yeast cells.  相似文献   

8.
The catalytic subunit of protein kinase A increases brain tryptophan hydroxylase activity. The activation is manifested as an increase in Vmax without alterations in the Km for either tetrahydrobiopterin or tryptophan. The activation of tryptophan hydroxylase by protein kinase A is dependent on ATP and an intact kinase and is inhibited specifically by protein kinase A inhibitors. Protein kinase A also catalyzes the phosphorylation of tryptophan hydroxylase. The extent to which tryptophan hydroxylase is phosphorylated by protein kinase A is dependent on the amount of kinase used and is closely related to the degree to which the hydroxylase is activated. These results suggest that a direct relationship exists between phosphorylation and activation of tryptophan hydroxylase by protein kinase A.  相似文献   

9.
Phospholipase A2 (PLA2) is the enzyme regulating the release of arachidonic acid in most cell types. A high molecular mass, 85-kDa soluble form of PLA2 (cPLA2) has recently been identified, the activity of which is stably increased by stimulation of cells with hormones and growth factors. Growth factor stimulation of cells has been reported to result in increased phosphorylation of cPLA2 on serine residues, but the kinases mediating this effect have not been identified. We report here that human cPLA2 is phosphorylated in vitro by two growth factor-stimulated serine/threonine-specific kinases, p42 MAP kinase and protein kinase C (PKC). Phosphorylation of the cPLA2 enzyme by either kinase results in an increase in catalytic cPLA2-specific activity. Domains of the cPLA2 molecule have been expressed in Escherichia coli, and the fusion proteins purified. PKC and p42 MAP kinase give different patterns of phosphorylation of the recombinantly expressed cPLA2 fragments. p42 MAP kinase selectively phosphorylates the domain of cPLA2 containing a MAP kinase consensus sequence, whereas PKC phosphorylates sites in all three recombinantly expressed domains of the enzyme. Peptide mapping indicates that the site phosphorylated by p42 MAP kinase is different from those phosphorylated by PKC. The combined action of both of these kinases is likely to mediate the effects of growth factor stimulation on arachidonic acid release through the activation of cPLA2.  相似文献   

10.
Phosphorylation sites were introduced into chimeric monoclonal antibody CC49 (MAb-chCC49) by inserting synthetic fragments encoding two and six phosphorylation sites into an expression vector, pdHL7. The phosphorylation sites were created by using the predicted consensus sequences for phosphorylation by the cAMP-dependent protein kinase to the carboxyl terminus of the heavy chain constant region of the MAb-chCC49. The resultant modified antibodies (MAb-chCC49K1 and MAb-chCC49-6P) were expressed in NS0 cells and purified. The MAb-chCC49K1 protein contains two phosphorylation sites per heavy chain whereas the MAb-chCC49-6P protein contains six sites per heavy chain. Both MAb-chCC49K1 and MAb-chCC49-6P proteins can be phosphorylated by the catalytic subunit of cAMP-dependent protein kinase with [gamma-32P]ATP to high specific activity. The 32P-labeled MAb-chCC49K1 and MAb-chCC49-6P proteins bind to cells expressing TAG-72 antigens. The introduction of phosphorylation sites into a monoclonal antibody provides a reagent for the diagnosis and treatment of cancer. The use of multiple phosphorylation sites provides antibodies with very high specific radioactivity and demonstrates that cassettes of phosphorylation sites can be introduced into proteins without altering their functional activity.  相似文献   

11.
Subcellular localization of type II cAMP-dependent protein kinase is determined by the interactions of the regulatory subunit (RII) with specific RII-anchoring proteins. By using truncated NH2-terminal RII beta fusion proteins expressed in Escherichia coli and the mitotic protein kinase p34cdc2 isolated from HeLa cells or starfish oocytes, we investigated the in vitro phosphorylation of RII beta by these kinases. The putative site for phosphorylation by the mitotic kinases is Thr-69 in the NH2-terminal domain of RII beta. This phosphorylation site matches the consensus sequence X(T/S)PX(K/R) for p34cdc2 recognition and belongs to a well-conserved sequence found in all RII beta sequences known to date. In contrast to phosphorylation by casein kinase II or the cAMP-dependent protein kinase catalytic subunit, phosphorylation of RII beta by mitotic kinases impaired its interaction with a well-known RII-anchoring protein, the neuronal microtubule-associated protein 2. The potential regulatory significance of the phosphorylation of this site on the interaction with microtubule-associated protein 2 and other RII-anchoring proteins and the physiological relevance of this cyclin B/p34cdc2 kinase-catalyzed modification of RII beta (or phosphorylation by other proline-directed protein kinases) are discussed.  相似文献   

12.
NIPP-1 is the RNA-binding subunit of a major species of protein phosphatase-1 in the nucleus. We have expressed nuclear inhibitor of protein phosphatase-1 (NIPP-1) in Sf9 cells, using the baculovirus-expression system. The purified recombinant protein was a potent (Ki = 9.9 +/- 0.3 pM) and specific inhibitor of protein phosphatase-1 and was stoichiometrically phosphorylated by protein kinases A and CK2. At physiological ionic strength, phosphorylation by these protein kinases drastically decreased the inhibitory potency of free NIPP-1. Phosphorylation of NIPP-1 in a heterodimeric complex with the catalytic subunit of protein phosphatase-1 resulted in an activation of the holoenzyme without a release of NIPP-1. Sequencing and phosphoamino acid analysis of tryptic phosphopeptides enabled us to identify Ser178 and Ser199 as the phosphorylation sites of protein kinase A, whereas Thr161 and Ser204 were phosphorylated by protein kinase CK2. These residues all conform to consensus recognition sites for phosphorylation by protein kinases A or CK2 and are clustered near a RVXF sequence that has been identified as a motif that interacts with the catalytic subunit of protein phosphatase-1.  相似文献   

13.
The p70 S6 kinase is activated by diverse stimuli through a multisite phosphorylation directed at three separate domains as follows: a cluster of (Ser/Thr) Pro sites in an autoinhibitory segment in the noncatalytic carboxyl-terminal tail; Thr-252 in the activation loop of the catalytic domain; and Ser-394 and Thr-412 in a segment immediately carboxyl-terminal to the catalytic domain. Phosphorylation of Thr-252 in vitro by the enzyme phosphatidylinositol 3-phosphate-dependent kinase-1 or mutation of Thr-412 --> Glu has each been shown previously to engender some activation of the p70 S6 kinase, whereas both modifications together produce 20-30-fold more activity than either alone. We employed phospho-specific anti-peptide antibodies to examine the relative phosphorylation at several of these sites in wild type and various p70 mutants, in serum-deprived cells, and in response to activators and inhibitors of p70 S6 kinase activity. Substantial phosphorylation of p70 Thr-252 and Ser-434 was present in serum-deprived cells, whereas Thr-412 and Thr-444/Ser-447 were essentially devoid of phospho-specific immunoreactivity. Activation of p70 by insulin was accompanied by a coordinate increase in phosphorylation at all sites examined, together with a slowing in mobility on SDS-PAGE of a portion of p70 polypeptides. Upon addition of rapamycin or wortmannin to insulin-treated cells, the decrease in activity of p70 was closely correlated with the disappearance of anti-Thr-412(P) immunoreactivity and the most slowly migrating p70 polypeptides, whereas considerable phosphorylation at Ser-434 and Thr-252 persisted after the disappearance of 40 S kinase activity. The central role of Thr-412 phosphorylation in the regulation of kinase activity was further demonstrated by the close correlation of the effects of various deletions and point mutations on p70 activity and Thr-412 phosphorylation. In conclusion, although p70 activity depends on a disinhibition from the carboxyl-terminal tail and the simultaneous phosphorylation at both Thr-252 and Thr-412, p70 activity in vivo is most closely related to the state of phosphorylation at Thr-412.  相似文献   

14.
Three amino acids were identified in the catalytic (C) subunit of the cyclic AMP-dependent protein kinase that are involved in interaction with regulatory (R) subunit, but not with the specific protein kinase inhibitor, PKI. In a functional assay for gene induction, a C expression vector with serine or arginine substituted for Leu-198 and the double mutant C, His-87-->Gln/Trp-196-->Arg (Orellana, S. A., and McKnight, G. S. (1992) Proc. Natl. Acad. Sci, U.S.A. 89, 4726-4730), retained activity in the presence of an excess of RI or RII. In contrast, cotransfection of a full-length PKI expression vector completely inhibited the activity of both mutant and wild type C subunits. These data suggest that although the substrate/pseudosubstrate sites of R and PKI interact with C at the catalytic site, there is an additional domain on the C subunit that is involved in holoenzyme formation with R subunit and is distinct from sites specifying high affinity PKI binding.  相似文献   

15.
A cAMP-specific phosphodiesterase (PDE4D3) is activated in rat thyroid cells by TSH through a cAMP-dependent phosphorylation (Sette, C., Iona, S., and Conti, M.(1994) J. Biol. Chem. 269, 9245-9252). This short term activation may be involved in the termination of the hormonal stimulation and/or in the induction of desensitization. Here, we have further characterized the protein kinase A (PKA)-dependent phosphorylation of this PDE4D3 variant and identified the phosphorylation site involved in the PDE activation. The PKA-dependent incorporation of phosphate in the partially purified, recombinant rat PDE4D3 followed a time course similar to that of activation. Half-maximal activation of the enzyme was obtained with 0.6 microM ATP and 30 nM of the catalytic subunit of PKA. Phosphorylation altered the Vmax of the PDE without affecting the Km for cAMP. Phosphorylation also modified the Mg2+ requirements and the pattern of inhibition by rolipram. Cyanogen bromide cleavage of the 32P-labeled rat PDE4D3 yielded two or three major phosphopeptide bands, providing a first indication that the enzyme may be phosphorylated at multiple sites in a cell-free system. Site-directed mutagenesis was performed on the serine residues present at the amino terminus of this PDE in the context of preferred motifs for PKA phosphorylation. The PKA-dependent incorporation of 32P was reduced to the largest extent in mutants with both Ser13 --> Ala and Ser54 --> Ala substitutions, confirming the presence of more than one phosphorylation site in rat PDE4D3. While substitution of serine 13 with alanine did not affect the activation by PKA, substitution of Ser54 completely suppressed the kinase activation. Similar conclusions were reached with wild type and mutated PDE4D3 proteins expressed in MA-10 cells, where the endogenous PKA was activated by dibutyryl cAMP. Again, the PDE with the Ser54 --> Ala substitution could not be activated by the endogenous PKA in the intact cell. These findings support the hypothesis that the PDE4D3 variant contains a regulatory domain target for phosphorylation at the amino terminus of the protein and that Ser54 in this domain plays a crucial role in activation.  相似文献   

16.
Modulation of N-methyl-D-aspartate receptors in the brain by protein phosphorylation may play a central role in the regulation of synaptic plasticity. To examine the phosphorylation of the NR1 subunit of N-methyl-D-aspartate receptors in situ, we have generated several polyclonal antibodies that recognize the NR1 subunit only when specific serine residues are phosphorylated. Using these antibodies, we demonstrate that protein kinase C (PKC) phosphorylates serine residues 890 and 896 and cAMP-dependent protein kinase (PKA) phosphorylates serine residue 897 of the NR1 subunit. Activation of PKC and PKA together lead to the simultaneous phosphorylation of neighboring serine residues 896 and 897. Phosphorylation of serine 890 by PKC results in the dispersion of surface-associated clusters of the NR1 subunit expressed in fibroblasts, while phosphorylation of serine 896 and 897 has no effect on the subcellular distribution of NR1. The PKC-induced redistribution of the NR1 subunit in cells occurs within minutes of serine 890 phosphorylation and reverses upon dephosphorylation. These results demonstrate that PKA and PKC phosphorylate distinct residues within a small region of the NR1 subunit and differentially affect the subcellular distribution of the NR1 subunit.  相似文献   

17.
Protein kinase CK2 formerly called casein kinase II is a protein kinase able to phosphorylate more than 100 proteic substrates. We have purified protein kinase CK2 from the yeast Y. lipolytica to phosphorylate milk and plant reserve proteins to a significant extent. In the case of plant reserve proteins, which are polymeric substrates, not all subunits are substrate for protein kinase CK2, even if non phosphorylated subunits contain significant potent phosphorylations sites. Best substrates were soy beta-conglycinin (0.72 P/mol) and dephosphorylated caseins (0.5 P/mol). We have studied some functional properties of phosphorylated caseins. Solubility was improved for all pH values but pI. Sensitivity to calcium has also been assessed, and it is slightly improved upon phosphorylation. We have cloned the catalytic subunit of protein kinase CK2 from yeast Y. lipolytica. The recombinant catalytic subunit expressed in E. coli was active and displayed kinetic properties similar to those of the purified enzyme. The recombinant catalytic subunit was able to phosphorylate plant reserve proteins and milk proteins to a significant extent. Best substrates were soy beta-conglycinin (1.0 P/mol), and glycinin (0.59 P/mol).  相似文献   

18.
Aggregation of the B-cell antigen receptor leads to the activation of the 72-kDa Syk protein-tyrosine kinase and the phosphorylation of tubulin on tyrosine. To explore the requirement of Syk catalytic activity for tubulin phosphorylation, tubulin was isolated from cytosolic fractions from anti-IgM-activated B-cells (DT40) that lacked endogenous Syk and immunoblotted with anti-phosphotyrosine antibodies. Tubulin was not tyrosine-phosphorylated in Syk- B-cells. Phosphorylation could be restored by the expression of wild-type, but not catalytically inactive, Syk. However, both catalytically inactive and wild-type Syk were capable of constitutive association with tubulin, indicating that tubulin phosphorylation is not required for this interaction. Anti-phosphotyrosine antibody immunoblotting of proteins adsorbed to colchicine-agarose revealed the presence of three major tubulin-associated phosphoproteins of 110, 90, and 74 kDa, the phosphorylation of which was dependent on Syk expression. The proteins of 110 and 90 kDa were identified as Cbl and Vav, two proto-oncogene products known to become prominently phosphorylated following receptor engagement. Both proteins were shown to be constitutively associated with tubulin.  相似文献   

19.
20.
Cyclins contain two characteristic cyclin folds, each consisting of five alpha-helical bundles, which are connected to one another by a short linker peptide. The first repeat makes direct contact with cyclin-dependent kinase (CDK) subunits in assembled holoenzyme complexes, whereas the second does not contribute directly to the CDK interface. Although threonine 156 in mouse cyclin D1 is predicted to lie at the carboxyl terminus of the linker peptide that separates the two cyclin folds and is buried within the cyclin subunit, mutation of this residue to alanine has profound effects on the behavior of the derived cyclin D1-CDK4 complexes. CDK4 in complexes with mutant cyclin D1 (T156A or T156E but not T156S) is not phosphorylated by recombinant CDK-activating kinase (CAK) in vitro, fails to undergo activating T-loop phosphorylation in vivo, and remains catalytically inactive and unable to phosphorylate the retinoblastoma protein. Moreover, when it is ectopically overexpressed in mammalian cells, cyclin D1 (T156A) assembles with CDK4 in the cytoplasm but is not imported into the cell nucleus. CAK phosphorylation is not required for nuclear transport of cyclin D1-CDK4 complexes, because complexes containing wild-type cyclin D1 and a CDK4 (T172A) mutant lacking the CAK phosphorylation site are efficiently imported. In contrast, enforced overexpression of the CDK inhibitor p21Cip1 together with mutant cyclin D1 (T156A)-CDK4 complexes enhanced their nuclear localization. These results suggest that cyclin D1 (T156A or T156E) forms abortive complexes with CDK4 that prevent recognition by CAK and by other cellular factors that are required for their nuclear localization. These properties enable ectopically overexpressed cyclin D1 (T156A), or a more stable T156A/T286A double mutant that is resistant to ubiquitination, to compete with endogenous cyclin D1 in mammalian cells, thereby mobilizing CDK4 into cytoplasmic, catalytically inactive complexes and dominantly inhibiting the ability of transfected NIH 3T3 fibroblasts to enter S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号