首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, effects of exchange coupling of soft magnetic layer on switching field and magnetization reversal behaviour of CoPt-SiO2(soft)/CoPt-SiO2(hard) exchange coupled media were investigated. With increasing the thickness of the soft layer, both the coercivity and magnetization squareness of composite media decreased. Soft layer thickness 4 nm and below was more effective to significantly reduce the switching field than that above 4 nm. More incoherent switching behavior was observed with increasing soft layer thickness.  相似文献   

2.
系统地研究了磁控溅射制备的Sm22Co78/Fe65Co35/Sm22Co78三层膜系统中,当软磁相的体积分数一定时,矫顽力和剩磁比随FeCo软磁层厚度(d)的变化,所有样品的磁滞回线均为单一硬磁相特征:说明FeCo软磁层与SmCo硬磁层之间的交换相互作用,使两相很好地复合在一起。当软磁相的体积分数为15%,20%,30%的情况下,矫顽力随d的变化都出现峰值,而剩磁比则单调增加,当体积分数为50%时,矫顽力随d的增加滑有峰值,但剩磁比还是单调增加,随着软磁体积分数的增加,矫顽力峰值及峰值位置都是单调减少。  相似文献   

3.
L.J. Qiu  J.Z. Shi  J.S. Chen  J. Ding 《Thin solid films》2008,516(16):5381-5385
Multi-layer nanocomposite structures of Ta/Ru/CoCr1/FeCoTaCr(soft magnetic layer)/CoCr2/CoCrPt-SiO2(hard magnetic layer or recording layer)/C and Ta/Ru/CoCr1/CoCrPt-SiO2/CoCr2/FeCoTaCr/C were proposed. This exchange coupled composite (ECC) media consisting of hard/soft stacked magnetic layers were promising in improving the writability of perpendicular magnetic recording media. A small CoCrPt c-axis orientation dispersion of about 3° was achieved with the optimized sputter conditions. The CoCrPt-SiO2 grains were well segregated by SiO2 at grain boundaries. The macro-magnetic properties showed that the stacked magnetic grains switched in a coherent mode and that switching field decreased with increasing the thickness of the soft magnetic layer.  相似文献   

4.
Dynamic and static magnetizations of an exchange biased bilayer system which is constructed as a proximity of a CoO layer on an Fe-layer grown on the (100) oriented MgO substrate by ion beam sputtering technique have been investigated by ferromagnetic resonance (FMR) and vibrating sample magnetometry (VSM) techniques. The room-temperature FMR measurements reveal that the Fe layer is epitaxially grown on MgO substrate with four-fold magnetocrystalline anisotropy and the hard magnetization axis of the sample is the [100] crystallographic directions of MgO substrate. We have determined the g-value, effective magnetization, magnetocrystalline anisotropy constants and contributions to FMR linewidth due to the intrinsic Gilbert damping and inhomogeneity of magnetization by using Landau–Lifshitz–Gilbert (LLG) equation. We observed an unusual FMR line shape attributed to impedance switching of resonance cavity and complex component of conductivity of sample system. The low-temperature FMR measurement shows asymmetric hysteretic behavior of resonance field related to magnetic coupling of ferromagnetic and antiferromagnetic layers. From both FMR and VSM measurements between 10–300 K, the magnetocrystalline anisotropy is observed to dominate above blocking temperature, while unidirectional anisotropy is observed to dominate below blocking temperature over internal magnetic anisotropy. FMR spectra have a comparatively small linewidth between 40–100 Oe, which indicates to a high crystallinity of the Fe film. Gilbert constant was calculated as 0.007 from the linewidth fitting of FMR spectra. This small value is a suitable for reducing the critical switching current used in magnetic tunneling junction. Detailed exchange bias studies were carried out for hard and easy axis of the sample in the temperature range of 10–300 K. From both low-temperature FMR and VSM measurements, the blocking temperature of the system was determined as ~60 K.  相似文献   

5.
We have performed first-principles calculations to study the interfacial exchange coupling in a SmCo5/Co multilayer model system. The hard phase hcp SmCo5 and the soft phase hcp Co (or Co(1-x)Fe(x)) stacking along (1010) direction are structurally well matched. The atomic structure, including the alignment and the separation between layers, were optimized first. Then the non-collinear magnetic structures were calculated to explore the exchange coupling dependence on the variation of the atomic composition across the interface. We found that the inter-phase exchange coupling strength is strongly dependent on the interface condition between the hard and soft phase by comparing the exchange coupling strengths in different interface conditions. The findings were further confirmed by the calculated site-to-site exchange parameters across the interface.  相似文献   

6.
The magnetic properties of Co/Fe/Ni thin-film structures grown by magnetron sputtering have been studied using magnetooptical techniques. The results of x-ray diffraction measurements showed that all samples possessed a nanocrystalline structure. The magnetization curves and hysteresis loops were measured using the equatorial Kerr effect for two orientations of the external magnetic field. It is established that the Co/Fe/Ni thinfilm structures exhibit a planar magnetic anisotropy. The magnetic behavior of each layer in the initial inhomogeneous Co/Fe/Ni structure is substantially influenced by stray fields of the adjacent layers. This circumstance accounts for the complex shapes of hysteresis loops. The annealing in vacuum at T = 500°C renders Co/Fe/Ni thin-film structures magnetically hard compared to the initial state. The experimental results are explained by certain features of the microstructure of samples.  相似文献   

7.
We have studied the process of magnetization reversal in a thin-film Fe/Sm2Co7 exchange coupled bilayer structure under the action of an in-plane external field. An analysis of the local magnetization changes, as measured using the magnetooptical indicator film technique, showed that the magnetization reversal proceeds by inhomogeneous rotation of the magnetic moments in Fe and SmCo layers, both in plane and in the perpendicular direction. It is established that, because of the exchange interaction between layers, the magnetization reversal along the easy axis in the entire structure is determined primarily by the formation of exchange-induced spin helices and domain walls in the magnetically soft layer, whereas the magnetization reversal at an angle of α with respect to the easy axis plays a significant role in the magnetically hard layer and becomes dominating for α=90°.  相似文献   

8.
The influence of the antiferromagnetic layer of cobalt oxide on the magnetization reversal of a submicron cobalt planar wire was studied using the magneto-transport measurements. For pure Cobalt (Co) planar wires of width less than 1.2 μm, length of 30 μm, and thickness of 30 nm, the shape anisotropy dominates the magnetic behavior revealing all characteristics of a single domain structure. With oxidation, there is a thin layer of CoO on top of the Co layer and the exchange coupling between the CoO (antiferromagnet) and Co (ferromagnetic) layers may suppress the shape anisotropy induced single domain structure and the typical switching behavior of magnetization reversal. The magnetic configuration and magnetization reversal are determined by the competition of unidirectional anisotropy and exchange coupling constant.  相似文献   

9.
The magnetic properties of Co/Si/Co thin-film structures grown by magnetron sputtering have been studied using magnetooptical techniques. It is established that the saturation field (H S) of trilayers exhibits oscillations as a function of the thickness of the semiconductor (silicon) interlayer. This behavior is explained by structural features of the Co/Si/Co system and the presence of antiferromagnetic exchange coupling between magnetic layers via the silicon interlayer.  相似文献   

10.
Fabrication of bulk nanocomposite materials, which contain a magnetically hard phase and a magnetically soft phase with desired nanoscale morphology and composition distribution has proven to be challenging. Here we demonstrate that SmCo/Fe(Co) hard/soft nanocomposite materials can be produced by distributing the soft magnetic α-Fe(Co) phase particles homogenously in a hard magnetic SmCo phase matrix through a combination of high-energy ball milling and a warm compaction. Severe plastic deformation during the ball milling results in nanoscaling of the soft phase with size reduction from micrometers to ~15 nm. Up to 35% of the soft phase can be incorporated into the composites without coarsening. This process produces fully dense bulk isotropic nanocomposite materials with remarkable energy-product enhancement (up to 300%) owing to effective inter-phase exchange coupling.  相似文献   

11.
We study the quasi-static and dynamical switching of magnetic tunnel junction patterned in micron-sized cells with integrated field pulse line. The tunnel junctions are CoFe/AlO/CoFe with an exchange biasing layer of MnIr. Quasi-static characterizations have been used to determine anisotropy, coercive as well as exchange bias fields. Dynamic switching measurements are done by applying fast-rising magnetic field pulses (178 ps–10 ns) along the hard axis of the junction with a quasi-static easy-axis applied field. We identify the field conditions leading to no-switching, to direct-writing and to toggle switching. We identify these field conditions up to the precessional limit, and construct the experimental dynamical astroïd. The magnetization trajectories leading to direct-writing and to toggle switching are well described by macrospin simulations.  相似文献   

12.
磁性多层膜的X射线光电子能谱研究   总被引:1,自引:0,他引:1  
用射频 /直流磁控溅射法制备了NiOx/Ni81Fe19和Co/AlOx/Co磁性薄膜。利用X射线光电子能谱研究了NiOx 对Ni81Fe19耦合交换场Hex与NiOx 化学状态的关系以及Co/AlOx/Co磁性薄膜中AlOx 对Co膜的覆盖状况。结果表明 :Hex的大小只与 2价镍有关 ,单质镍和 3价镍对Hex没什么作用 ;在Co/AlOx/Co磁性薄膜中 ,Al层将Co膜完全覆盖所需要的最小厚度为 2 .0nm ,用角分辨XPS测出的Al氧化厚度为 1 15nm  相似文献   

13.
The mechanism of magnetic coupling in multilayer films was investigated by analyzing the shape of the magnetoresistance hysteresis loops. A magnetic field was applied during the deposition of the layers in a high vacuum. Each film consisted of a soft layer of Ni-Fe and a hard layer of Co separated by intermediate laminations of SiO or Ag. The thickness of the intermediate lamination varied from 100 to about 5000 Å. The magnetoresistance hysteresis loop of the soft layer was displaced along the driving field axis. The displacement reaches a maximum value when the intermediate lamination has a thickness of about 700 Å and seems to be caused by a negative magnetic coupling. It was also found that the material of the intermediate lamination does not materially alter the characteristics of the films. Both phenomena were discussed in terms of magnetostatic interactions between uniaxial single-domain particles. The explanation for the interfacial energy based on long-range interactions points out that short-range interactions between the separated layers can be neglected.  相似文献   

14.
Electric field (E‐field) modulation of perpendicular magnetic anisotropy (PMA) switching, in an energy‐efficient manner, is of great potential to realize magnetoelectric (ME) memories and other ME devices. Voltage control of the spin‐reorientation transition (SRT) that allows the magnetic moment rotating between the out‐of‐plane and the in‐plane direction is thereby crucial. In this work, a remarkable magnetic anisotropy field change up to 1572 Oe is achieved under a small operation voltage of 4 V through ionic liquid (IL) gating control of SRT in Au/[DEME]+[TFSI]?/Pt/(Co/Pt)2/Ta capacitor heterostructures at room temperature, corresponding to a large ME coefficient of 378 Oe V?1. As revealed by both ferromagnetic resonance measurements and magnetic domain evolution observation, the magnetization can be switched stably and reversibly between the out‐of‐plane and in‐plane directions via IL gating. The key mechanism, revealed by the first‐principles calculation, is that the IL gating process influences the interfacial spin–orbital coupling as well as net Rashba magnetic field between the Co and Pt layers, resulting in the modulation of the SRT and in‐plane/out‐of‐plane magnetization switching. This work demonstrates a unique IL‐gated PMA with large ME tunability and paves a way toward IL gating spintronic/electronic devices such as voltage tunable PMA memories.  相似文献   

15.
M Guth  S Colis  G Schmerber  A Dinia 《Thin solid films》2000,380(1-2):211-214
Magnetic and transport properties of a hard–soft spin valve structures have been investigated. A first series of sandwiches composed of an artificial antiferromagnetic (AAF) Co/Ru/Co sandwich decoupled from a soft Fe/Co buffer layer as follows: Fe50 Å/Co5 Å/Cu30 Å/Co30 Å/Ru5 Å/Co30 Å/Cu20 Å/Cr20 Å has been prepared. This sandwich presents a giant magnetoresistance (GMR) of 1.7% and an exchange coupling strength of approximately −1.73 erg/cm2. Afterwards, we have grown a second series of sandwiches in which the Cu/Cr capping layer has been replaced by a 15-Å thin semiconductor layer of ZnS, covered by a soft ferromagnetic layer of Co5 Å/Fe50 Å. Surprisingly, the giant magnetoresistance for the last sandwiches has been increased by a factor of 2, up to 4%. To explain this non-expected result, we have performed atomic force microscope imaging at the semiconductor layer surface. The results show that the semiconductor layer is not homogeneous and contains a non-negligible density of pin-holes, that are responsible of a direct magnetic coupling between the upper 30 Å Co layer of the AAF and the Co 5 Å/Fe 50 Å bilayer. This coupling induces a strong asymmetry between the magnetic layers of the AAF and consequently an enhancement of the GMR.  相似文献   

16.
The hysteresis behavior of sputteredNd50Fe50/Fe multilayers consisting of alternate layers of magnetically hard Nd50Fe50 and sof α-Fe phases with a bilayer thickness in the range of 20–40 nm has been investigated. Samples prepared at 5 nTorr Ar gas pressure showed a uniform single-phase hysteresis loop, with increased reduced remanence (0.6) for Fe layer thickness under 7.5 nm, which is attributed to a strong exchange coupling between the hard Nd50Fe50 and soft α-Fe. Samples sputtered at higher gas pressures showed smooth loops for larger critical Fe thickness, with a higher coercivity and a lower reduced remanence.  相似文献   

17.
This paper presents the results obtained on the multiple layers of cobalt (Co)/platinum (Pt) and cobalt (Co)/platinum (Pt)/cobalt (Co) on the oxidised silicon substrate. The cobalt layers were deposited by metal-organic chemical vapour deposition on oxidised-silicon substrates at 450?°C, in H2 ambient with 2-torr processing pressure. The platinum layers were deposited by E-beam evaporation in a separate vacuum system. The magnetic properties of Co/Pt/Co and Co/Pt multilayer were compared with the single cobalt layers of similar thicknesses on the oxidised silicon substrate. From the hysteresis loops it was observed that thin cobalt layers on oxidised-silicon substrate shows hard magnetic property with coercivity H c values of 360 Oe and 500 Oe respectively for the 30- and 15-nm cobalt layers. The multiple layers of Co/Pt/Co and Co/Pt of cobalt thickness 15- and 30-nm with platinum 1.5-nm spacer-layer show significant change in magnetic properties (i.e. coercivity H c and magnetisation M s ) and, gave soft magnetic properties with H c values 51 and 49 Oe respectively, which are significantly less than the H c values of single cobalt layers on oxidised silicon. Also, single and multiple layers cobalt with platinum were annealed and compared with the as-deposited layer structures. From the microstructure analysis by SEM, and AFM it was found that the single and multilayer had similar roughness. Magnetic images were observed by MFM and analyzed in terms of domain structure.  相似文献   

18.
By inserting an ultrathin Pt layer at Co/Ru interface,we established antiferromagnetic coupling with outof-plane magnetization in Co/Ru/Co film stacks fabricated by sputtering.To achieve configuration suitable for free layer,the magnetic properties of the stacks have been investigated by changing the thickness of Co,Ru and Pt layers using an orthogonal wedges technique.It is found that magnetic properties for upper Co layer thinner than 0.5 nm are sensitive to little change in Ru thickness.Improving continuity of upper Co layer by slightly increasing the thickness can effectively increase the squareness of minor loop.The switching magnetization of synthetic antiferromagnetic(SAF) structure is achieved by DC current under an in-plane static magnetic field of ± 500 Oe.This structure is very promising for free layer in spintronic application.  相似文献   

19.
Spin crossover (SCO) complexes sensitively react on changes of the environment by a change in the spin of the central metallic ion making them ideal candidates for molecular spintronics. In particular, the composite of SCO complexes and ferromagnetic (FM) surfaces would allow spin-state switching of the molecules in combination with the magnetic exchange interaction to the magnetic substrate. Unfortunately, when depositing SCO complexes on ferromagnetic surfaces, spin-state switching is blocked by the relatively strong interaction between the adsorbed molecules and the surface. Here, the Fe(II) SCO complex [FeII(Pyrz)2] (Pyrz = 3,5-dimethylpyrazolylborate) with sub-monolayer thickness in contact with a passivated FM film of Co on Au(111) is studied. In this case, the molecules preserve thermal spin crossover and at the same time the high-spin species show a sizable exchange interaction of > 0.9 T with the FM Co substrate. These observations provide a feasible design strategy in fabricating SCO-FM hybrid devices.  相似文献   

20.
Structure and magnetic properties of the nanocomposite magnets prepared by mechanical alloying procedure with composition 55 wt pct Nd (Fe0.92B0.08)5.5+45 wt pct a-Fe, 55 wt pct Nd(Fe0.8-xCo0.12Nbx B0.08)5.5+45 wt pct a-Fe (x=0.00, 0.01, 0.03) and 55 wt pct (Nd0.9Dy0.1) (Fe0.77Co0.12Nb0.03B0.08)5.5+45 wt pct a-Fe were studied. It was found that substitution of Co for Fe could significantly improve the permanent magnetic properties of the nanocomposite magnets and typically, the maximum magnetic energy product was increased from 104.8 kJ/m3 (13.1 MGOe) to 141.6 kJ/m3 (17.7 MGOe). In contrast to the case of conventional nominally single-phase magnets, the addition of Nb results in promoting the growth of a-Fe grain and is thus unfavorable for the improvement of permanent magnetic properties of the nanocomposites. Although the addition of Dy can increase the coercivity of the magnets, the increase of magnetic anisotropy of hard phase leads to decrease of the critical grain size of soft phase. Additionally it causes the difficulty of preparing the nanocomposites because it is more difficult to control the grain size of soft phase to meet the requirement of appropriate exchange coupling between hard and soft grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号