首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental investigations of the reactions between silica, alkali hydroxide solution, and calcium hydroxide show that alkali-silicate-hydrate gel (A-S-H) comparable to that formed by the alkali-silica reaction (ASR) in concrete does not form when portlandite or the Ca-rich, Si-poor C-S-H of ordinary portland cement (OPC) paste is available to react with the silica. Under these conditions, we observe either the formation of additional C-S-H by reaction of Ca(OH)2 with the dissolving silica or the progressive polymerization of C-S-H. The A-S-H dominated by Q3 polymerization forms only after portlandite has been consumed and the C-S-H polymerized. These conclusions are consistent with previously published results and indicate that the ASR gel of concrete forms only in chemical environments in which the pore solution is much lower in Ca and higher in Si than bulk pore solution of OPC paste. These results highlight the similarity between ASR and the pozzolanic reaction and are supported by data for mortar bar specimens.  相似文献   

2.
Thermodynamic modelling of the hydration of Portland cement   总被引:1,自引:0,他引:1  
A thermodynamic model is developed and applied to calculate the composition of the pore solution and the hydrate assemblage during the hydration of an OPC. The calculated hydration rates of the individual clinker phases are used as time dependent input. The modelled data compare well with the measured composition of pore solutions gained from OPC as well as with TGA and semi-quantitative XRD data. The thermodynamic calculations indicate that in the presence of small amounts of calcite typically included in OPC cements, C-S-H, portlandite, ettringite and calcium monocarbonates are the main hydration products. The thermodynamic model presented in this paper helps to understand the interactions between the different components and the environment and to predict the influence of changes in cement composition on the hydrate assemblage.  相似文献   

3.
The concentrations of Ca, S, Al, Si, Na, and K in the pore solutions of ordinary Portland cement (OPC) and white Portland cement (WPC) pastes were measured during the first 28 days of hydration at room temperature. Saturation indices (SI) with respect to various solid phases known to occur in cement pastes were calculated from a thermodynamic analysis of the elemental concentrations, resulting in good agreement between the two pastes. In agreement with other published work, gypsum was saturated during the first several hours of hydration and then undersaturated thereafter, while portlandite was modestly supersaturated after the first few hours. High levels of supersaturation with respect to ettringite and calcium monosulfoaluminate were calculated, particularly prior to the consumption of gypsum at around 10 h. Results are consistent with published thermodynamic studies that show calcium monosulfoaluminate is metastable with respect to ettringite under normal hydration conditions. Three different ion activity product (IAP) equations for C-S-H were applied to the data. From 10 h onward, each of the IAP values declined gradually over time and the values for the OPC and WPC pastes were in close agreement. The same IAP equations were applied to experimental data from the pure CaO-SiO2-H2O system, resulting in good agreement between the cement paste pore solutions and the equilibrium between portlandite and the upper, or metastable, C-S-H solubility curve.  相似文献   

4.
Model for the Developing Microstructure in Portland Cement Pastes   总被引:3,自引:0,他引:3  
A method is proposed for quantitatively predicting the volume of the major phases in hydrated cement pastes as a function of (1) the composition of the cement, (2) the degree of reaction, and (3) the initial water:cement ratio. This procedure is then used to develop a quantitative model for the surface area and volume of porosity that is accessible to nitrogen in C-S-H. Published values for surface areas and volume of pores are compared with the predictions made by the model. An implication of the model is that there are two types of C-S-H, or perhaps regions within the C-S-H: one that nitrogen can penetrate and one that it cannot.  相似文献   

5.
Traditional pozzolanic mortars such as those from Rhodes, Greece, or Hagia Sophia, Turkey, revealed the presence of a calcium-silicate-hydrate (C-S-H) binding phase. This phase, which is similar to that found in ordinary Portland cement (OPC), is produced under the pozzolanic reaction of slaked lime with fine reactive siliceous sources at temperatures <100 °C. The traditional siliceous sources were replaced by fumed silica or tetraethyl orthosilicate (TEOS). A microstructural analysis revealed an enhanced reaction rate but similar morphologies of the resultant C-S-H phases, confirming that the reaction-limiting factor is the dissolution of the siliceous sources.  相似文献   

6.
High strength can be obtained at early ages for precast concrete elements by the use of CEMI 52.5R cement (OPC) and thermal treatment (steam curing). To compensate for the announced withdrawal of CEM I cements because of high CO2 emissions during their production and the ecotax that this will imply, one attractive alternative is the use of composed cements resulting from the combination of clinker with mineral admixtures. In steam curing conditions, previous studies have shown an increase in the compressive strength at one day of age for mortars incorporating an OPC/blast furnace slag (GGBS)/metakaolin (MK) combination, in comparison with mortars incorporating OPC only. The present study investigates the connection between the compressive strength, at one day of age, of steam cured mortars made with various binders and the hydration of these binders. The progress of the hydration was characterised by means of XRD, thermal and microprobe analyses. The results indicate that the increase in compressive strength when MK is incorporated (OPC/MK or OPC/MK/GGBS) can be explained by an increase in the amount of C-S-H, C-A-H, C-A-S-H phases, a decrease in the amount of CH and a change in the chemical nature of the matrix (decrease in C/S ratio). The decrease in compressive strength of OPC/slag-based material can be explained by a reduction in the amount of hydrated phases (particularly C-S-H) and compactness.These are promising results for precast concrete manufacturers who are concerned about preserving the environment.  相似文献   

7.
研究了不同掺量非晶态C12 A7/CaSO4·2H2 O体系对OPC净浆凝结时间、流动性和早期抗压强度的影响,通过XRD和SEM对水化产物的物相和形貌进行了表征,并采用量热试验对其水化历程进行了分析。结果表明:非晶态C12 A7/CaSO4·2H2 O体系掺量为5%,非晶态C12 A7与CaSO4·2H2 O的质量比为1.0∶1.0时,非晶态C12 A7/CaSO4·2H2 O体系能够促进C3 S和C2 S的水化,生成C-S-H凝胶相互交织搭接形成网络结构而促进凝结;同时也促使OPC水化早期产生大量针状晶体钙矾石,钙矾石与前期生成的C-S-H凝胶相互填充,使水化产物结构密实,提高早期强度。  相似文献   

8.
The E-modulus of early age cement-based materials, and more importantly, its evolution in time, is one of the most critical material-to-structural design parameters affecting the likelihood of early-age concrete cracking. This paper addresses the problem by means of a multistep micromechanics approach that starts at the nanolevel of the C-S-H matrix, where two types of C-S-H develop in the course of hydration. For the purpose of homogenization, the volume fractions of the different phases are required, which are determined by means of an advanced kinetics model of the four main hydration reactions of ordinary portland cement (OPC). The proposed model predicts with high accuracy the aging elasticity of cement-based materials, with a minimum intrinsic material properties (same for all cement-based materials), and 11 mix-design specific model parameters that can be easily obtained from the cement and concrete suppliers. By way of application, it is shown that the model provides a quantitative means to determine (1) the solid percolation threshold from micromechanics theory, (2) the effect of inclusions on the elastic stiffening curve, and (3) the development of the Poisson's ratio at early ages. The model also suggests the existence of a critical water-to-cement ratio below which the solid phase percolates at the onset of hydration. The development of Poisson's ratio at early ages is found to be characterized by a water-dominated material response as long as the water phase is continuous, and then by a solid-dominated material response beyond the solid percolation threshold. These model-based results are consistent with experimental values for cement paste, mortar, and concrete found in the open literature.  相似文献   

9.
One of the most accepted engineering construction concepts of underground repositories for high radioactive waste considers the use of low-pH cementitious materials. This paper deals with the design of those based on Ordinary Portland Cements with high contents of silica fume and/or fly ashes that modify most of the concrete “standard” properties, the pore fluid composition and the microstructure of the hydrated products. Their resistance to long-term groundwater aggression is also evaluated. The results show that the use of OPC cement binders with high silica content produces low-pH pore waters and the microstructure of these cement pastes is different from the conventional OPC ones, generating C-S-H gels with lower CaO/SiO2 ratios that possibly bind alkali ions. Leaching tests show a good resistance of low-pH concretes against groundwater aggression although an altered front can be observed.  相似文献   

10.
Liquid manure, stored in silos often made of concrete, contains volatile fatty acids (VFAs) that are chemically very aggressive for the cementitious matrix. Among common cements, blast-furnace slag cements are classically resistant to aggressive environments and particularly to acidic media. However, some standards impose the use of low C3A content cements when constructing the liquid manure silos. Previous studies showed the poor performance of low-C3A ordinary Portland cement (OPC). This article aims at clarifying this ambiguity by analyzing mechanisms of organic acid attack on cementitious materials and identifying the cement composition parameters influencing the durability of agricultural concrete. This study concentrated on three types of hardened cement pastes made with OPC, low-C3A OPC and slag cement, which were immersed in a mixture of several organic acids simulating liquid manure. The chemical and mineralogical modifications were analyzed by electronic microprobe, XRD and BSE mode SEM observations. The attack by the organic acids on liquid manure may be compared with that of strong acids. The alteration translates into a lixiviation, and the organic acid anions have no specific effect since the calcium salts produced are soluble in water. The results show the better durability of slag cement paste and the necessity to limit the amount of CaO, to increase the amount of SiO2 (i.e., reduction of the Ca/Si ratio of C-S-H is not sufficient) and to favor the presence of secondary elements in cement.  相似文献   

11.
研究协同利用硅钙渣、粉煤灰、水泥和脱硫石膏制备硅酸钙板时,原料配比、蒸养条件对硅酸钙板力学性能、水化产物的影响,并利用XRD、IR和SEM表征了原料的协同水化历程和水化产物的微观结构和表面形貌.试验结果表明:最佳原料配比为硅钙渣60%、粉煤灰24%、水泥10%和脱硫石膏6%;最佳蒸压养护条件为蒸养温度180℃,恒温蒸养时间8 h,硅酸钙板抗折强度满足国家标准强度的D1.3的Ⅱ级要求;随着蒸养温度升高,原料水化依次生成C-S-H凝胶、托贝莫来石和针状硬硅钙石,大量托贝莫来石和硬硅钙石的生成使得硅酸钙板的强度得以提升.  相似文献   

12.
An understanding about the dissolution phenomena of cement hydrates is important to assess changes in the long-term performance of radioactive waste disposal facilities. To investigate the alteration associated with dissolution, dissolution tests of ordinary Portland cement (OPC) hydrates were performed.Through observation of the samples after leaching, it was confirmed that ettringite precipitation increased as the dissolution of the portlandite and the C-S-H gel progressed. EPMA performed on cross-sections of the solid phase showed a clear difference between the altered and unaltered parts. The boundary between the two parts was termed the portlandite (CH) dissolution front. As the leaching period became longer, the CH dissolution front shifted toward the inner part of the sample. A linear relationship was derived by plotting the distance moved by the CH dissolution front against the square root of the leaching time. This indicated Ca ion movement by diffusion.  相似文献   

13.
粉煤灰-水泥水化的核磁共振定量分析   总被引:2,自引:0,他引:2  
利用高分辨固体核磁共振仪结合去卷积技术,定量分析了粉煤灰水泥浆体中水泥和粉煤灰的水化程度以及C-S-H凝胶中硅氧-铝氧链平均长度,同时研究了粉煤灰火山灰反应对C-S-H结构的影响。结果表明:水化3 d时,系统中约47%的水泥和14%的粉煤灰参与了水化反应,C-S-H平均链长为3.2;水化120d时,水泥和粉煤灰的水化程度分别为89%和33%,C-S-H平均链长约为3.8,远大于纯水泥浆体中C-S-H的平均链长(为2.7)。水化3 d时粉煤灰玻璃相结构中的Si—O—Si,Si—O—和Al—Al共价键断裂,形成了单体硅酸根和单体铝酸根,这些单体结构桥连体系中的二聚体单元进而提高了C-S-H平均链长。粉煤灰掺入并不会因为C-S-H聚合度提高以及ACL增加就能促进粉煤灰水泥浆体强度。  相似文献   

14.
The alkali-binding capacity of C-S-H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C-S-H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data reported in literatures concerning thirteen different recipes are analyzed and used as references. A three-dimensional computer-based cement hydration model (CEMHYD3D) is used to simulate the hydration of Portland cement pastes. These model predictions are used as inputs for deriving the alkali-binding capacity of the hydration product C-S-H in hydrated Portland cement pastes. It is found that the relation of Na+ between the moles bound in C-S-H and its concentration in the pore solution is linear, while the binding of K+ in C-S-H complies with the Freundlich isotherm. New models are proposed for determining the alkali-binding capacities of C-S-H in hydrated Portland cement paste. An updated method for predicting the alkali concentrations in the pore solution of hydrated Portland cement pastes is developed. It is also used to investigate the effects of various factors (such as the water to cement ratio, clinker composition and alkali types) on the alkali concentrations.  相似文献   

15.
A rheological technique (creep/recovery) was used, in combination with scanning electron microscopy, to study the effects of hydration on both the microstructure and flow properties of fresh cement paste during the induction period, which is the first few hours after cement and water are mixed. The principal hydration product was calcium silicate hydrate (C-S-H), which was first observed in the neck areas between cement particles. At the same time, yield stress increased progressively, which reflected a strengthening of bonds between particles attributed to the C-S-H. Failure strain also increased, which reflected a fundamental change in the nature of that bond. Based on rheological measurements, the activation energy of the hydration process during this time period was estimated to be 5.2 kcal/mol (˜22 kJ/mol).  相似文献   

16.
Aiming at evaluating the effects of porosity in hardened cement paste on dissolution phenomena, we prepared hardened ordinary Portland cement (OPC), with variation in pore volume, and then leached them in deionized water. It was found that the bulk density and pore volume were affected by the dissolution of portlandite. The larger the pore volume of the sample, the more rapidly portlandite is dissolved. An electron probe microanalysis (EPMA) performed on the cross-section of the solid phase showed the ‘portlandite (CH) dissolution front’. As the leaching period became longer, the CH dissolution front shifted towards the inner part. In addition, the movement of the CH dissolution front was described by the diffusion model, with consideration of the dissolution of portlandite. It was concluded that the transport of leached constituents is diffusion controlled, and the major leached constituents of hardened OPC are portlandite and C-S-H gel. Large pore, which was generated associated with the leaching of portlandite, was considered significantly to affect the diffusion of leached constituents.  相似文献   

17.
Decalcification shrinkage of cement paste   总被引:3,自引:0,他引:3  
Decalcification of cement paste in concrete is associated with several modes of chemical degradation including leaching, carbonation and sulfate attack. The primary aim of the current study was to investigate the effects of decalcification under saturated conditions on the dimensional stability of cement paste. Thin (0.8 mm) specimens of tricalcium silicate (C3S) paste, white portland cement (WPC) paste, and WPC paste blended with 30% silica fume (WPC/30% SF) were decalcified by leaching in concentrated solutions of ammonium nitrate, a method that efficiently removes calcium from the solid while largely preserving silicate and other ions. All pastes were found to shrink significantly and irreversibly as a result of decalcification, particularly when the Ca/Si ratio of the C-S-H gel was reduced below ∼ 1.2. Since this composition coincides with the onset of structural changes in C-S-H such as an increase in silicate polymerization and a local densification into sheet-like morphologies, it is proposed that the observed shrinkage, here called decalcification shrinkage, is due initially to these structural changes in C-S-H at Ca/Si ∼ 1.2 and eventually to the decomposition of C-S-H into silica gel. In agreement with this reasoning, the blended cement paste exhibited greater decalcification shrinkage than the pure cement pastes due to its lower initial Ca/Si ratio for C-S-H gel. The similarities in the mechanisms of decalcification shrinkage and carbonation shrinkage are also discussed.  相似文献   

18.
3:1 BFS:OPC, 9:1 BFS:OPC and 9:1 alkali activated BFS:OPC pastes cured at 20 °C and 60 °C for 90 days were submitted to accelerated carbonation under 5% CO2, 60% relative humidity and 25 ± 5 °C for 21 days. TGA/DTG was used to quantify the amounts of carbonates formed from calcium hydroxide (CH) and calcium silicate hydrate (C-S-H), based on the CH and carbonate contents before and after carbonation. Apparent dry density, apparent porosity and gas permeability were measured before and after accelerated carbonation testing, and the phenolphthalein method used to determine the accelerated carbonation rate. The results showed that samples cured at elevated temperature, i.e. 60 °C, were initially less porous and, therefore, had decreased levels of both total carbonation and C-S-H carbonation. In addition, the carbonation of C-S-H was significantly higher in pastes that contained less CH before carbonation. In the activated 9:1 BFS:OPC, the carbonation of C-S-H was extensive, despite a lower carbonation rate than the analogous non-activated system. In the particular case of activated 9:1 BFS:OPC, a shift in the DTG decarbonation pattern was observed and XRD showed that aragonite was present as one of the calcium carbonate polymorphs.  相似文献   

19.
A promising approach to accelerate cement hydration known as “seeding technology” has been discovered using nano-particles to provide additional nucleation sites for growing of C-S-H. Two different types of polymer, polycarboxylate (PCE) and polysulfonate (PSE) were used as stabilizer to synthesize nano-C-S-H via co-precipitation process. The obtained C-S-H-polymer composites were characterized by means of XRD, FTIR, thermogravimetric analysis (TGA), TEM, dynamic laser scattering (DLS), and BET. DLS measurement shows that the particle size of the obtained C-S-H-polymer suspension ranges from 82.6 to 589.9 nm. The results of DLS and BET show that the particle size of the C-S-H particles synthesized using PCE polymer as stabilizer is smaller than those synthesized with PSE polymer, and hence the specific surface area is much higher. FTIR and TGA results confirm the presence of the polymers in the obtained C-S-H composites particles. XRD results indicate that the presence of the polymers reduces the crystallinity of C-S-H due to the absence of the d002 peak at 2θ of 7°. The calorimetry results show that the main hydration peak of cement is dramatically increased by the addition of the C-S-H-polymer composites. It is interestingly found that the acceleration effect of the C-S-H-polymer composites is linearly proportional to the total surface area of the nanoparticles introduced into the cement pastes. At the same time, it is found that the secondary hydration peak, usually known as the sulfate-depletion peak, is greatly advanced by addition of the C-S-H nano-particles in comparison with the blank cement paste. The acceleration effect of the nano-C-S-H is further verified in a pure C3S system.  相似文献   

20.
Radioactive wastes in future underground disposal sites will induce a temperature increase at the interface between the cementitious materials and the host rock. To understand the evolution of Portland cement in this environment, an in situ specific device was developed in the Underground Research Laboratory in Tournemire (France). OPC cement paste was put into contact with clayey rock under water-saturated conditions at 70 °C. The initial temperature increase led to ettringite dissolution and siliceous katoite precipitation, without monosulfoaluminate formation. After 1 year of interaction, partial decalcification and diffuse carbonation (calcite precipitation) was observed over 800 μm in the cement paste. At the interface, a layer constituted of phillipsite (zeolite), tobermorite (well-crystallised C-S-H) and C-(A)-S-H had formed. Globally, porosity decreased at both sides of the interface. Geochemical modelling supports the experimental results, especially the coexistence of tobermorite and phillipsite at 70 °C, minerals never observed before in concrete/clay interface experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号