共查询到20条相似文献,搜索用时 120 毫秒
1.
支持向量机(Support Vector Machine.SVM)应用结构风险最小化理论,从训练集中选择一组特征子集。使得对特征子集的线性划分等价于对整个数据集的分割。支持向量机最初应用于模式识别,随后开始在信号处理、函数逼近等领域也得到了广泛发展。支持向量机与神经网络等常用方法相比,其具有泛化性好、建模所需学习数据较少等优点。 相似文献
2.
原油精馏装置处于石油化工厂工艺流程的最前端,石脑油是精馏装置的主要产品之一,干点值是衡量石脑油质量的一个重要参数指标,通过现有测量手段不能得到干点的实时测量值。而支持向量机是近年发展起来的一种基于统计学习理论的学习机器,在模式识别和非线性函数回归估计方面有很多的应用。文中旨在通过采用软测量技术得出石脑油干点的实时监测信息,着重讨论基于支持向量机回归和最小二乘支持向量机回归的软测量建模方法。 相似文献
3.
针对污水处理过程建模中样本数据可能存在的测量误差对模型性能的影响,提出一种自适应加权最小二乘支持向量机(AWLS-SVM)回归的软测量建模方法。该方法基于最小二乘支持向量机模型,根据样本拟合误差,并结合改进的指数分布赋权规则,自适应地为每个建模样本分配不同的权值,以降低随机误差对模型性能的影响;同时采用一种全局优化算法——混沌粒子群模拟退火(CPSO-SA)算法对最小二乘支持向量机的模型参数进行优化选择,以提高模型的泛化能力。仿真实验表明,AWLS-SVM模型的预测精度及鲁棒性能优于LS-SVM和WLS-SVM。最后,应用AWLS-SVM方法建立污水处理过程出水水质关键参数的软测量模型,获得了较好的效果。 相似文献
4.
基于多最小二乘支持向量机的草酸钴粒度软测量 总被引:3,自引:2,他引:3
提出了一种基于改进的鲁棒学习方法(improved robust learning algorithm,IRLA)的多最小二乘支持向量机(multipleleast squares support vector machine,Multi-LSSVM)建模方法,用以解决非线性系统建模问题。该方法通过Bootstrap算法复制出训练集样本空间上的多个样本子空间,训练出多个成员最小二乘支持向量机模型,然后应用改进的鲁棒学习方法对成员最小二乘支持向量机模型的权重进行优化融合,从而使多最小二乘支持向量机模型具有较高的准确率和泛化能力。通过仿真实验,验证了方法的有效性;并将其应用于湿法冶金合成过程草酸钴粒度软测量建模问题,获得了比单个最小二乘支持向量机模型方法更高的预测精度。 相似文献
5.
针对铝电解槽温度高、腐蚀性强、温度难以直接测量的问题,在分析了铝电解生产工艺和电解温度影响因素的基础上。建立了基于最小二乘支持向量机(LS-SVM)的铝电解槽电解温度的软测量模型。并根据实测数据进行了仿真。仿真结果表明:基于最小二乘支持向量机方法建立的铝电解槽电解温度软测量模型具有精度高、泛化性能好等特点。是一种有效测量铝电解槽电解温度的方法。 相似文献
6.
7.
基于CPSO与LSSVM融合的发酵过程软测量建模 总被引:2,自引:0,他引:2
发酵过程是一个复杂的时变、非线性、强耦合过程.发酵过程中的关键参量菌体浓度通常难以用传统物理传感器实时在线检测.为了测量该参数,将CPSO算法与LSSVM相结合构建发酵过程软测量模型.模型采用CPSO算法优化LSSVM软测量模型参数,克服了常规交叉验证法选取参数的耗时和盲目性.仿真结果表明,CPSO-LSSVM软测量模型较LSSVM软测量模型更能在较短的时间内获得较高的收敛精度,其平均误差为2.05%,说明该软测量模型可用于发酵过程不可在线测量的菌体浓度的实时在线软测量,并且预测精度高,预测速度快,预测能力强.该软测量建模方法也为发酵过程其他关键参量的实时在线测量提供了新的途径. 相似文献
8.
9.
锅炉是工业企业最重要的热交换装置,通过对锅炉水总碱度的监测与预测,可以改变锅炉水质的结垢倾向,减少锅炉事故的发生,对提高企业的生产效率有着重要的意义.软测量技术广泛应用于工业过程,其核心是建立一个可靠的软测量模型.为了实现对锅炉水总碱度的预测,基于FIA系统测定的混合碱溶液的浓度和电压值,文章提出使用PLS和LSSVM的软测量技术来预测锅炉水中NaOH和Na2CO3的浓度,比较二者在预测精度和建模时间上的优劣,在此基础上建立PLS-LSSVM模型,试验和仿真结果表明PLS-LSSVM模型的预测方法将NaOH的平均相对误差从17.48%降低到了4.54%,而Na CO3的预测平均相对误差从17.52%降低到了3.64%,其预测效果可以更好地满足工业现场的需求. 相似文献
10.
11.
12.
为消除数控机床热误差对加工精度的影响,提出了基于在线最小二乘支持向量机的数控机床热误差建模方法。为构建机床热误差模型,进行了建模实验,采用智能温度传感器与激光位移传感器分别测量机床温度值与主轴热变形量。将获得的数据进行在线最小二乘支持向量机建模训练,构建机床热误差模型。在根据模型得出误差预测值的同时,可以不断根据在线输入的新数据修正热误差模型本身,运算时间短,适用于在线建模。实验结果表明,基于在线最小二乘支持向量机的数控机床热误差建模方法具有精度高、鲁棒性强和计算时间短的特点。在此基础上,根据在线模型进行热误差补差,可有效消除机床热误差影响,提高数控机床的加工精度。 相似文献
13.
14.
基于最小二乘支持向量机的传感器非线性动态补偿 总被引:2,自引:1,他引:2
提出了一种基于最小二乘支持向量机的非线性传感器动态测量误差的校正方法,使得通过该方法补偿的传感器具有理想的输入输出特性。先将传感器的非线性动态系统分解成线性动态子环节和非线性静态子环节串联;与之对应,非线性动态补偿过程也包含2个阶段:线性动态补偿和非线性静态校正。然后,通过函数展开将补偿器的非线性传递函数转换为等价的类线性形式一中间模型;再通过LS-SVM回归算法求取中间模型参数;最后,推导出中间模型参数与补偿器2个子模型参数之间的关系,并通过该关系实现非线性静态校正和线性动态补偿环节的同时辨识。与常规非线性动态补偿方法比较,该方法优点是明显的:(1)只需进行一次动态标定实验;(2)能给出非线性动态补偿器的数学解析表达式;(3)充分利用LS—SVM的优点,使辨识的补偿器具有更好的抗干扰能力。仿真与实际实验结果均表明该传感器非线性动态补偿方法有效。 相似文献
15.
16.
17.
为了解决传统网络化制造系统安全检测技术检测精度低的难题,提出基于粒子群优化最小二乘支持向量机(PSO.LSSVM)的网络化制造系统安全检测方法.首先,确定网络化制造系统安全检测特征,并对特征进行预处理.然后,建立基于粒子群优化最小二乘支持向量机的网络化制造系统安全检测模型.最后,通过实例证明该方法的有效性及优越性.分别采用人工神经网络、支持向量机与PSO-LSSVM方法进行对比分析,实验结果表明,PSO-LSSVM对网络化制造系统的安全检测性能优于神经网络与支持向量机的安全检测性能. 相似文献
18.
一种基于LS-SVM与PID复合的逆控制系统 总被引:1,自引:0,他引:1
针对逆系统中非线性逆模型辨识困难的问题,研究了基于最小二乘支持向量机(LS-SVM)的逆模型辨识及控制,并用微粒子群算法(PSO)优化LS-SVM的参数和核函数参数。提出了一种由LS-SVM的逆模型与PID结合的复合控制系统,由LS-SVM辨识非线性系统的逆模型作为前馈控制器,形成直接逆控制。同时,由PID控制器构成反馈控制,克服直接逆控制鲁棒性不强的缺陷。仿真研究结果表明LS-SVM的逆模型辨识能力强,该复合控制系统具有比基于最近邻聚类的RBF神经网络逆控制系统更优的动态跟踪性能,更好的抗干扰能力和鲁棒性。 相似文献
19.
基于互信息变量选择的变压器油中溶解气体浓度预测 总被引:2,自引:0,他引:2
针对变压器油中溶解气体浓度预测中存在的输入变量选择结果受噪声影响的问题,提出了改进的互信息变量选择和支持向量回归机的油中溶解气体浓度预测方法.首先,对油中溶解气体各变量进行相空间重构,利用独立成分分析方法进行信噪分离;然后,提出改进的标准化互信息方法进行输入变量选择,以降低噪声对互信息变量选择的影响;最后,采用支持向量回归机作为预测器对变压器油中溶解气体浓度进行预测.实验结果表明,改进的标准化互信息的输入变量选择结果吻合油劣化热动力学研究结果,具有较优的预测精度和泛化能力. 相似文献
20.
利用12电极电容层析成像系统电容传感器获取的66个电容测量值,基于最小二乘支持向量机(LS-SVM)算法,提出了两相流空隙率在线测量的新方法。该方法用LS-SVM来建立空隙率测量模型。在实际测量时,首先归一化ECT获取的电容测量值,然后将归一化电容值输入已经建立的空隙率模型即可计算出空隙率。实验结果表明:该方法是有效的,避免了复杂耗时的图像重建过程,测量误差在6%以内,测量时间小于0.08 s。 相似文献